


Optimization with Linear Constraints

Interior Point MethodsSimplex Method

Motivations

Linear constraints arise naturally in many problems in 

economics, science, engineering, and statistics.

Efficient methods available for solving many linear programs 

in practice.

Linear objective functions provide useful class for modeling 

and analysis.

Applications 

● Science and Engineering

● Economics, Business Decisions

● Planning Logistics, Transportation

● Machine learning, AI

● Statistics and Data Analysis



image.png

Business Logistics: Manufacturing

factory porcelain glass available operation 

hours 

A 70 30 1500

B 60 50 1000

C 55 45 750

profit per unit $4000 $2000

Linear Programming Problem

Task: maximize profits by planning production at factories for plates.

Factory production: A: (x1,x2) B: (x3,x4), C: (x5,x6).
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Task: Learn hyperplane that separates the data into two classes.

Data:

Example:

Linear classifiers 

we require classification with 

Machine Learning: Linear Classification
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Linear Programming Problem
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Network Transport Capacity
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Task: Determine the maximum network flow possible from 1→7.

- Decision variables are xij for amount to send from node i → j. 

- We need to decide how much we send out along each edge, xij .

Constraints:

- Edges can only sustain the shown amounts kij from i → j.

- The amount going out of each note can not exceed the amount coming in.

Linear Programming Problem
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∞
Formulation: Add an extra edge with k71 = ∞. 
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Business: Supply-Chain Transportation Costs

Retailer A Retailer B Retailer C Retailer D SUPPLY 

(si)

Supplier A 10 25 10 5 250

Supplier B 12 30 18 23 450

Supplier C 5 40 22 15 (cij) 300

DEMAND (dj) 400 200 250 150 1000

Task: Determine how much to ship from each supplier to satisfy the retailer 

order demand.

- Decision variables are xij for amount to send from supplier i → retailer j. 

- The cost of each transport route is cij.

Constraints:

- Our shipping must meet demand, ∑ixij = dj.

- We must ship all of our supply, ∑j xij = si.

Linear Programming Problem

http://atzberger.org/
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Wasserstein Distance: Probability Theory and Statistics 

Linear Programming Problem

Task: Determine the “best” alignment between two probability distributions. 

We use the transport cost associated with the align to define a “distance” 

between probability distributions P, Q. 

Wasserstein Distance 

In the discrete case, we have

Wasserstein Distance 

Let cij = c(xi,xj), and pi=p(xi), qj=q(xj), xij=γ(xi,xj).   

This can be reformulated as a linear program.

http://atzberger.org/
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Compressed Sensing: L1-Reconstruction of Sparse Signals

Task: Determine the “best sparse” reconstruction of x satisfying the under-

determined linear system Ax = b.

Optimization Problem

fda.gov
fda.gov

||x||1 = |x1| + |x2| + … + |xn|.  Seeks xi with bias toward zero components.

For simplicity, above is for the noiseless case (can extend for noise).

Linear Programming Problem

This yields  xi = xi
+ - xi

-,  yi ≥ max(xi,-xi) = |xi|.

http://atzberger.org/
https://vimeo.com/513228250
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LP Problem

Use slack or surplus variables to standardize.

LP Problem (canonicalized)

Geometry of having only equality constraints.

Solutions now lie on intersections of hyperplanes in the generalized 
positive quadrant (x ≥ 0).

Planes arising from slack, project to half-spaces in the original variables.

Provides unified approaches to treat diverse LP problems. 

Simplex Method: Canonicalization and Geometry

http://atzberger.org/
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Simplex Method: Basic Feasible Points

basic feasible points

Consider the constraints and basic feasible points

As we increase m, we show how these points change (example in 3D).

m=1: triangle (simplex dimension n-1)
m=2: line (simplex dimension n - 2)
m=3: point (simplex dimension n - 3)

Basic feasible points are the vertices.

For canonicalized problem, solutions lie in the intersection of hyperplanes 
in the generalized positive quadrant (x ≥ 0).

Geometry requires they have at most m non-zero values

Solution strategy: develop algorithms that search among the basic 
feasible points.

m=0 m=1 m=2 m=3

http://atzberger.org/
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Simplex Method 
Simplex Method

For a basic feasible point x=(xB,xN), construct the triple (x,λ,s) to check KKT for optimality. KKT Conditions

Reduction in the objective function for non-optimal point is

http://atzberger.org/
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Simplex Method: Example

Example

solution:

Iterations of Simplex Method

Simplex Method Steps (Non-Degenerate Case):

Tableau notation

Wright 1999
Used for bookeeping key terms.

(details on the next slides)

http://atzberger.org/
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Simplex Method: Tableau Notation  Simplex Method

We construct the following tableau matrix for a basic feasible point x=(xB,xN) and B. 

Canonical Tableau Update to new basis

Update to new basis

multiply on left, 

http://atzberger.org/
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Simplex Method: Two-Phase Method 
Simplex Method

Artificial Problem

Finding initial basic feasible points for LP can be difficult. 

Two-Phase Method:

phase I:

• construct an artificial LP that has easy to find initial feasible point.

• minimize the artificial LP problem to find initial feasible point to the original LP.

phase II:

• use solution from phase I for starting value

• minimize the original LP problem 

Artificial Problem always has solution

Linear Program

http://atzberger.org/
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Simplex Method: Exponential Number of Steps Example

Example (Klee-Minty Cube):

Example: d variables and 2d inequality constraints, require ϵ ∊ (0,½).

Simplex Method:

Start at x = 0.

Simplex Method using Dantzig’s rules  visits all vertices 2d!

Gives exponential number of steps in d!

In practice, most problems exhibit convergence in polynomial number of 
steps in m (typically linear). 

Klee-Minty Cube

ϵ = ⅓ , d = 3

Shuiberts 2023

Challenge: simplex methods trace the boundary 
geometry of the feasible set. 

Alternatives: develop methods that approach the 
solution from outside or inside of the feasible set 
(avoid the boundary).

Interior Point Methods do this by using penalty 
methods and central path to approach from inside. 

IPMs: can solve LPs in polynomial number of steps.

http://atzberger.org/
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Solvers for Linear Programming beyond Simplex Methods

Simplex Method in some cases can be inefficient using Dantzig’s rules,    
since visits all vertices 2d!

Gives exponential number of steps in d!

For many constraints the geometry of the feasible domain can have 
complex boundary making vertex traversal inefficient. 

Alternative methods for LPs include  
- Ellipsoid Method (theoretically weak polynomial / but inefficient in 

practice from ill-conditioning).
- Interior Point Methods (uses penalty barrier methods) (future lectures).
- Primal-Dual Methods, and others.

Klee-Minty Cube

Shuiberts 2023

Interior Point Methods: start with an initial feasible point 
(need not be basic) and optimizes LP + possible penalties.  
For example, affine scaling or

For good choice of iterative methods, and schedule for 
penalty ε and accuracy ẟ , one can show 
weak polynomial time complexity.

Simplex Method and Interior Point Methods central in 
current software for solving large LP problems.  

More on this in upcoming lectures.

Boyd & VandenBerghes

Interior Point Methods

http://atzberger.org/
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