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Optimization with Linear Constraints

Linear Programming
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Motivations

Linear constraints arise naturally in many problems in
economics, science, engineering, and statistics.

Efficient methods available for solving many linear programs
In practice.

Linear objective functions provide useful class for modeling
and analysis.

Applications
« Science and Engineering
« Economics, Business Decisions
« Planning Logistics, Transportation
« Machine learning, Al
« Statistics and Data Analysis

Simplex Method Interior Point Methods
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Business Logistics: Manufacturing

factory porcelain glass available operation
hours

A 70 30 1500

B 60 50 1000

C 55 45 750

profit per unit | $4000 $2000

Task: maximize profits by planning production at factories for plates.

1N A,

Factory production: A: (X;,X,) B: (X3,X,), C: (Xs5,Xg)-

AN s A
W e WA

| g |

Linear Programming Problem

min 4(x3 + x3 + x5) + 230 + x4 + Xg)
subject

x1 + 3x0 < 150

6x3 + bxs < 100

b.bxs + 4.5xg < 75
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Machine Learning: Linear Classification

Task: Learn hyperplane that separates the data into two classes.
Data: {(xy, V1), (X2, ¥2), -, (x,, ¥,)}, with features x, labels y.
Example: x e RN ye{-1,+1}, with x=image, y = +1-> Apple, y =-1-> Orange

Linear classifiers
H = {h| h(x) =sign(w'x+ b), w e RY, b€ R}
we require classification with

yilw'x+b)>1

Linear Programming Problem

subject
yi(w'x; +b) >1-¢,
§=0.
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Network Transport Capacity

Task: Determine the maximum network flow possible from 1—-7. Formulation: Add an extra edge with k,; = .
- Decision variables are x; for amount to send from node i — j. Linear Programming Problem
- We need to decide how much we send out along each edge, X;; . Max xr1
subject
Constraints: :
ZXU g ZXM, I — 1,...,7
- Edges can only sustain the shown amounts k; from i — j. j k

- The amount going out of each note can not exceed the amount coming in.
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Business: Supply-Chain Transportation Costs

Retailer A Retailer B Retailer C Retailer D SUPPLY
(si)

Supplier A 10 25 10 5 250

Supplier B 12 30 18 23 450

Supplier C 5 40 22 15 (c;) 300

DEMAND (d) = 400 200 250 150 1000
Task: Determine how much to ship from each supplier to satisfy the retailer Linear Programming Problem
order de.rr.1and. | o o min Z Cii X

- Decision variables are x; for amount to send from supplier i — retailer j. i

- The cost of each transport route is c;. O subject
Constraints: O 90 ZX“ =g qu ik

- Our shipping must meet demand, > ;x; = d. 8: O "fj! > 0. J

O

- We must ship all of our supply, > x; =s;.
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Wasserstein Distance: Probability Theory and Statistics
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Task: Determine the “best” alignment between two probability distributions.

We use the transport cost associated with the align to define a “distance”

T T
60 80

100

between probability distributions P, Q.

Wasserstein Distance

WC(IEDa Q) —

vEN(P,Q),(X,Y)~

inf

Mk“ﬁﬂ

- //c(x y)v(x, y)dxdy,

where v € (P, Q) is a joint probability distribution with marginal

fwon—P

) and [~

(x, y)dx = Q(y).

In the discrete case, we have

= ZP;(S(X
= Z CH(S(X - Xr')

Wasserstein Distance

W, (P, Q) = inf E~ [c¢(X, Y

- Z c(x;, xj)’Y(X:'a Xj)
ij

Let ¢; = c(x;,x), and p=p(x;), g;=a(X;), X;=Y(Xi,Xj).
This can be reformulated as a linear program.

Linear Programming Problem
min E Cij Xij
ij
subject

§ Xij = Pj; E Xij = qi,
] J

0<X,j<1,
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Compressed Sensing: L1-Reconstruction of Sparse Signals

linear objective linear objective
X-ray function function
Source - .
: solution
solution
Beam \{
C}N N N

Motorized

Table L2-regularization

L1-regularization

tectoSw function function
fda.gov fda.gov
Task: Determine the “best sparse” reconstruction of x satisfying the under- Linear Programming Problem
determined linear system Ax = b. _
min Z Vi
. . . K—I_,K Y I
Optimization Problem
subject
min |[x
+|| ||1 A(I+—K_)=
subject
— — (xT = x") >0, y T x ) >0
Ax = b. Yi X; X = U yi + | X X; <

IIX[ly = [X{] + [X5| + ... +|X,|. Seeks x; with bias toward zero components. po=

For simplicity, above is for the noiseless case (can extend for noise). This yields x; = X" - X, y; 2 max(x;,-x;) = [xil.
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Linear Programming: Primal and Dual Problems

feasible

Primal LP Problem Dual LP Problem o
max c’x max b’ T
subject Ax =b, x > 0. subject ATA <c. s

Lagrangian for LP L(x,A,s) =c'x— AT (Ax—b) —s'x

L(x,A,s)=c'x— AT (Ax—b) —s'x.
( ) ( ) —b A —x" (ATA+s—c)

KKT Conditions

—— T T
Vil=0 = ATA+s=c =X (c—A A—s)+b A.

VAL=0 = Ax=bh. VxL =c— ATx —s =0, implies
VsL<L0 = x2>0,s>0, xs; =0. qa(A,s) = g‘l}{ L(x, A,s)
X n
For solution (x*,A*,s*), we have (s*:"x = 0),
) . ; - . - BT if (e—ATA—5s) =0
c' x¥ = (A A* +S*) x* = (Ax*) A +s" ' x* =b" A", o — 00, if (C—ATAT— 5) # 0.
KKT sufficient for showing x* is a minimizer. For example, max g(A,s) = ;TJ?ect I;T); Ce4s—=0.5>0
let X be any feasible point Ax = b, X > 0, then (s*:"x > 0), s 2=t J I
T< Tae 1 o) = AT y* 4 FTo s Tyt _ max b’ A
cx=(AA—|—s) Xx=(AX)' A" +s"'x>c'x ~ subject ATA—c<0.

= c'x>cTx*.
Solving KKT gives an optimal solution to both the Primal and Dual LP Problems.
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Simplex Method: Canonicalization and Geometry

plane with slack
LP Problem Az +€&=0
§>0

min ry, + o
subject 1 4+ 22, < 4
L1 2 0,332 Z‘ 0.

Use slack or surplus variables to standardize.

LP Problem (canonicalized)

min r, + s

subject T + 2332 + X3 = 4 projection of slack plane
x1 > 0,20 > 0,23 > 0. Az <b

Geometry of having only equality constraints.

Solutions now lie on intersections of hyperplanes in the generalized
positive quadrant (x = 0).

Planes arising from slack, project to half-spaces in the original variables.

Provides unified approaches to treat diverse LP problems.
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Simplex Method: Basic Feasible Points

Consider the constraints and basic feasible points

Ar=b, >0 m=0

m=1 m=2 m=3

m=1: triangle (simplex dimension n-1) basic feasible points
m=2: line (simplex dimension n - 2)
m=3: point (simplex dimension n - 3)

As we increase m, we show how these points change (example in 3D).

Basic feasible points are the vertices.

For canonicalized problem, solutions lie in the intersection of hyperplanes
in the generalized positive quadrant (x > 0).

Geometry requires they have at most m non-zero values

r=(T1,%2,...,%m,0,...,0)

Solution strategy: develop algorithms that search among the basic
feasible points.
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Simplex Method Simplex Method

Def: A basic feasible point x is a point that is feasible and for which there exists a collection — —
of indices B satisfying the following properties s P

(i) |B| = m, contains exactly m indices.
(ii) if ¢ & B then x; = 0.

(iii) The m x m matrix B = [A;];ep is non-singular.

For a basic feasible point x=(xg,Xy), construct the triple (x,A,s) to check KKT for optimality. KKT Conditions
T

AX:bi BXB—|—NXN:b$ BXB:bi XB:B_lb AA—’—S = C
AfXA +s=c Ax—b = 0

>
BTA—i_SB:CB, NTA—l—SN:CN X Z 0
s > 0

x's = Xpsp + Xysy = 0 -
S;L; — 0.

BTA:CB, NTA—I—SN:CN
)\:B_TCB, SN:CN—NTA:CN— (B_lN)TCB

Reduction in the objective function for non-optimal point is

c'x =b'A+s'x=b' A +shxy
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Simplex Method: Example

Example acic encible Simplex Method Steps (Non-Degenerate Case):
min —4x; — 2x, subject to solution ‘ 2 et Start with B, B, xg = B~1b > 0, x5y = 0.
x|+ Xy +x3 =5, 1. Solve for KKT triple (x, A, s), B™ X\ =cg,sy =cy — NTA.

. - 2. If sy > 0 then
221+ (1/2)x2 + x4 =38, halt: (KKT triple is valid and xg is optimal) .
x > 0.

3. Determine index g € B with most negative s; < 0,

Iterations of Simplex Method (entering index is g).

4. Solve for v in Bv = Aq.
B =1{3.4) 5. If v; < 0 for all i then

X3 5 0 51 —3 halt: (LP is unbounded) m.
= X4 s | A= o |’ N 55 - 9 6. Compute p = argmin; ,.~o xg,;/V;, the x;L = XB,p/Vp

(exiting index is p).

. . 7. Construct new basis set BT = (B \ {p}) U{q}, matrix BT,
B =3 1}and N = {4, 2}, and basic feasible point x}.

X3 1 0 S4 3/2 8. Repeat from step 1.
xB — — N A. — , SN = e
X1 4 —3/2 A\ —5/4

Tableau notation
B={2,1}and NV = {4, 3} a, ay --- a, b

|: X2 j| |: 4/3 :| |: —5/3 j| |: S4 j| |: 7/3 j| Yir Y12 ot Yin Yol
Xg = = , )., = , Sy = =
X 11/3 —2/3 53 5/3 ; -

Wright 1999 :
solution: ¢’x — —41/3 sy > 0 ? Yml Ym2 *** Ymn Yom Used for bookeeping key terms.
‘ - Y= r"lss s -+ s, —c'xg (details on the next slides)
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Simplex Method: Tableau Notation
We construct the following tableau matrix for a basic feasible point x=(xg,X,) and 3.

System Tableau A b B N
a1 a - a b — U ] [ CE qu\} ] multiply on left,
b ] _
o o B 0][B N b] [I. BN B
| 0 1 chb ¢ 0| | ck cn 0
dml dm2 - amn bm _ Im yjz]z&'B [yJOJ ]
c"let, & -+ ¢, O Cg CQJCI 0
1, 0 I, B'N B 'b | Iy BN B~ b
—ct 1 ch ¢k 0 107 e —ckBTIN —ctB7'b
Canonical Tableau Update to new basis
[ I, B'N B 'b ] m 1
T T T np—1
07 sy —cpBb = Z YigA Z VieAi + YpgAp = A, = y—Aq —
siy = ¢k —cLB™ !N =1 i=1i#p pPa
- N (e’ ™ T
Update to new bz:agsm 1 — Z w; A; = Z wi A + upA, Z (Uz
y; = Yij — ﬂypj, if 1 £ p i=1 i=1,i7#p i=1,i#p
Pq Ey
+ ypj P Yi 1
Ypi — if =P, -1
5 pJ Ynq ) yo=B8B""b

Simplex Method

basic

feasible

solution / set
4 Canonical Tableau
air a a, b
yi1 Y12 - Yin Y01
Ymi VYm2 - Ymn YOm
r 51 So Sh —CTXB
\_
e
yiq
i=Litp IP4
Y; u
P q
Ypq Ypq
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Simplex Method Example: Canonical Tableau

' ™
Update Simplex Method
Yi P asic easible
yl'j_ = yu — ﬁypj? if i ?5 P SI':Iutiﬂn ——"\:M,H\l;r se?l
Ypj -
Exa.mple y:. = J—,Eé, if i = p,
min —7x1 — 6x2 yo =xg =B b, y; =B A
subject 5T —cl —cIB N
2x1+x0 +x3 =3 \ J

X1+ 4x2 + x4 = 4
X1,X2,X3, X4 2 0.

initial-canonical iteration 1 iteration 2

ay a» a3 as b aiy a a3 as b ay a» a3 as b

2 1 1 03 1 3 3 0 3 1 0 4 -1 8

lution:
1 4 0 14 = 0 I 1 1 3 = 0 1 -1 2 5 s
. T : g 2? . 77 7 x=1%,2,0,0].

r —7 —6 0O 0O r 0 -3 5 0 5 r 0 0 2—72 % %
B={3,4},q=1 B ={1,4}, q=2 B ={1,2},
=34 =2 p=1 2 =33 i=[12 p=2 (final)
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Simplex Method Example: Canonical Tableau

{ ™
4 Update
. L ] L] L] L] L] - L ] L] L] L] L] + — Y pe— }‘}i . i .
L L] L] L] - L L L] L L] L] L] y":j _yu ypqpr’ lf’#p
a & s @ « & & & & & & & @ + —_ IEL if i =
Example - L] L] L] - L] L] L L] L] L] L] ypj- ypq ’ |f ! p,
min _2X1 —_— 3x2 - L] L] L] L] L] /. L] - L] L SPTJ- — C}'I‘- _ ch_lN.
SUbjECt Xl _I_ X3 — 3 « s 8 @ . 17':'_:_’:/_}_)_,‘ \ 7
x1 —6x2 + x4 = —3 . Sl ,
—Ox1 +8x0 + x5 =1
X1, X2, X3, X4, X5 2 0.
initial-canonical iteration 1 iteration 2
a1 482 a3 a4 as b a1 a2 a3 a4 as b ay ap a3 a4 ay, b
1 O 1 0 0 3 1 0 1 0 O 3 1 0 1 0 0 3
1 -6 0 1 0 —3 -2 00 1 3 -2 0 02 1 3 15 solution:
— - —
9 8 0 0 1 1 -2 100 L 1 01 ¢ ol 1 x=[3,§,0,15,0].
rTl—=2 =3 0 0 0 O rfl-%2 o0 0 0 3 3 (Tlo o% o 3 3
B={3?415}=q=2 B={3?4?2}sq=1 32{1,4,2},
Yio _r1l . _ Yio _ T _ .
e =Igli=0Blp=3 ve = BlLi=0lp=1 (final)
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Simplex Method: Two-Phase Method

Linear Program Artificial Problem
: T min y1+y2+ -+ Unm
i © X subject [A, I,]|x;y]=Db

subject Ax=b, x> 0.

Finding initial basic feasible points for LP can be difficult.

(x;y] > 0.

Two-Phase Method:

phase I
 construct an artificial LP that has easy to find initial feasible point.
* minimize the artificial LP problem to find initial feasible point to the original LP.

phase Il:
 use solution from phase | for starting value
* minimize the original LP problem

Artificial Problem always has solution

BEGES

Simplex Method

basic feasible
solution ~r / set

~{
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Simplex Method: Exponential Number of Steps Example

Example (Klee-Minty Cube):

mMAaximize Iy
1

subject to 0 <z <
ery =xy =1 —€exy
ery <3 <1 —exy

ELq | =xq =1 —cxq 1.

Example: d variables and 2d inequality constraints, require € € (0,%).

Simplex Method:
Start at x = 0.

Simplex Method using Dantzig’s rules visits all vertices 29!
Gives exponential number of steps in d!

In practice, most problems exhibit convergence in polynomial number of
steps in m (typically linear).

Klee-Minty Cube

—"‘-
-.--’
ﬂ‘-
a--'-
i“—
\/

Shuiberts 2023

e=%,d=3

Challenge: simplex methods trace the boundary
geometry of the feasible set.

Alternatives: develop methods that approach the
solution from outside or inside of the feasible set
(avoid the boundary).

Interior Point Methods do this by using penalty
methods and central path to approach from inside.

IPMs: can solve LPs in polynomial number of steps.
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Solvers for Linear Programming beyond Simplex Methods

Klee-Minty Cube
mMAaximize Iy
< 1
Ex] =¥ = 1 — &3y
ers <r3 =1 — w9

subject to 0 <z,

Shuiberts 2023

Simplex Method in some cases can be inefficient using Dantzig’s rules,
since visits all vertices 24!

Gives exponential number of steps in d!

For many constraints the geometry of the feasible domain can have
complex boundary making vertex traversal inefficient.

Alternative methods for LPs include
Ellipsoid Method (theoretically weak polynomial / but inefficient in
practice from ill-conditioning).
Interior Point Methods (uses penalty barrier methods) (future lectures).
Primal-Dual Methods, and others.

Interior Point Methods

Boyd & VandenBerghes

Interior Point Methods: start with an initial feasible point
(need not be basic) and optimizes LP + possible penalties.
For example, affine scaling or

m

min f(x) + eg(x)  g(x) = Z — log(b; — a;x)

C
xE€ i=1

For good choice of iterative methods, and schedule for
penalty € and accuracy 6, one can show
weak polynomial time complexity.

Simplex Method and Interior Point Methods central in
current software for solving large LP problems.

More on this in upcoming lectures.
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