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Integer Linear Programming (ILP)

Motivations

@ Many problems only allow for a discrete set
of possibilities.

@ Examples include the number of people,
products, or vehicles in planning.

@ Also, distinct types, categories, or outcomes.

Integer Linear Program (ILP)

min c'x
subject Ax =b
x>0, xeZ.
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Approaches to ILPs
@ Relax the x € Z condition and solve LP for X*.
@ Approximate the solution by X* = [X*].

@ Use LP to approximate the solution and if not in Z
introduce successive new constraints to rule-out
non-integer points (Gomory Cuts).

@ Otbher strategies include: branch-and-bound, other
cutting-plane rules, and heuristic search.

Examples and Applications

- Planning / scheduling: Traveling Salesman Problem (TSP).
- Theorem provers / logic: Satisfiability (SAT), 0-1 ILP.
- Resource allocation: cell phone networks, job scheduling.
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Integer Linear Programming: Example

ILP
min cx
subject Ax =b
x>0, xeZ.
Example (LP1)
min —Xx1 — 2x2
subject —2x1 + x0 + x3 = 2
—x1+x24+x4 =3
x1 + x5 =3
x>0, xeZ.
Canonical Tableau
a; ap a3 ay ag b aj ap a3 ay as b
-2 1 1 0 0 2 -2 1 1 0 0 2
-1 1 0 1 03 —1 1 0 1 03
1 0o 0 0 13 — 1 0O 0 0 13
c™l-1 =2 0 0 00 Ml-1 =2 0 0 00
B ={3,4,5} B ={3,4,5}, g=2
(canonicalize) Yo —[2,3],i=[1,2],p=1
Yia , 3], , 2], .

cee Update
“ oo v Vi o
:::: Y,-vf)’fj—ﬁ)/pp ifi#p
oo + - =
Ypi = Ypq’ Fi=p
cet s,\-’,-:cA-’l-fcé—Ble
iteration:1 iteration:2
ay ap a3 ag as b ap ap a3 a4 as b
-2 1 1 0 0 2 0o 1 —1 2 0 4
1 0 -1 1 01 1 0 -1 1 01
1 0 0 0 13 — 0 0 1 -1 12
Tl-5 0 2 0 04 o 0 -3 5 009
B={2,4,5}, g=1, B={2,1,5}, =3,
10 —1,3],i=[2,3],p =2 M —2,i=[Lp=3
Yig Yig
iteration:3
ap ay a3 as a5 b
01 0 1 1 6 . .
100 01 3 — 5°'_"t[';’"6("2""'(‘;)0]
000 1 -1 1 2 =550
rTlo 0o 0o 2 315
B ={2,1,3}, (final)
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Integer Linear Programming: Example
Example (LP2)
min —2x1 — 3x2
subject x1 +x3=3
X1 —6xp + x4 = —3
—Ox1 +8x0+x5 =1
X1, X2, X3, X4, X5 2 0.
initial-canonical iteration 1
ay ay a3 a4 as b ap ay a3 a4 as b
1 010 0 3 1 010 0 3
1601 0-3 —%001%—%_}
-9 8 0 0 1 1 -2 100 L 1
|2 =3 0 0 0 o0 M=% 0 0 0 & 2

B ={3,4,5},qg=2
Yio 11y ;= —
Vg =gl i=Blp=3
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B={3,4,2},g=1
W —q3,i=[1]p=1
Yig
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Update

Yi o
y,-j-':y,j*ﬁypj, ifi#p

Ypj

Vo = s ifi=p,
s,\7; = c,\7; — C;—BilN.
iteration 2
ay ap a3 as as b
0 1 0 0
0% 1 3 15 solution (fail):
1% 01} x=[3,%,0,15,o].
B={1,4,2},
(final)

UC Santa Barbara
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Integer Linear Programming: Relaxing to LP

ILP : Tt Update
min cTx . y;:yfjfj;%ypj, ifi#p
subject Ax =b . DI y;:yyify ifi = p,
x>0, x€Z. . cia sgchﬁqfcgsfw
LP1 . ..
ay a» a3 as as b
01 0 1 1 6
(1) Z (1) 7? 1 z — io:t[lg,ns(,v;h;);]_ Relaxing ILPs to LPs
Tlo o 0 2 315 @ Suppose we ignore the integer constraint?
B = {2,1,3}, (final) @ Often we still obtain integer solutions, but this can fail!
@ When can we relax integer constraints? Still guarantee
LP2 integer solutions x* € Z7?
ay ap a3 as a5 b
1T 0 10 0 3 Modifcations of LPs
002Z 13 15 IR solution (fails): @ When LP fails, how can we augment the problem to continue
01 3 o} I x = [3, .0, 15,0]. search for integer solutions?
Moo 03P @ There are many strategies used in practice.

B ={1,4,2}, (final)
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Integer Linear Programming (ILP)

ILP

min cTx

subject Ax =b
x>0, xeZ.

For any m X m matrix B with det B # 0 the solution
x = B~1b can be expressed as

1 ~ A
Xj = det(B;), where B; has jt" column replaced by b.

det B

Proof: Let D;(v) = Dj(vi, va, ..., vm) = det(B;j(v)), where
B;(v)) denotes replacing column j with the vector v. If we
take v = B; then D;(B;) = det(B). Since the determinant is
linear in any given column j, we have

Dj(vi,va,...,vm) = Cjvi + -+ + CjVm.

Another useful property is that if we let v = By with
k # j then Dj(Bx) = 0. We consider the linear system
Bx = b,

Buixit + Bioxo +---+ Bimxm = b
Boixit + Boxo +---4 Bomxm = b

Bmxi + Bm2xe +:+-+ Bmmxm = bm
If we multiply the ith row by Cij and sum, this yields
S Di(Bi)xx = det(B)x; = Dj(b) = det(5;). W
Integer Linear Programming:

@ For basic feasible solution we have xg = B~ 1h.

@ Consider matrix B and b with only integer
coefficients.

@ In this case, det(B) and det(éj) are integers.
O If det(B) = +£1 then x; is an integer.
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Integer Linear Programming (Unimodular Case)

ILP (Case I) ILP (Case Il)
min cx min cx
subject Ax =b subject Ax <b
x>0, xeZ. x>0, xeZ.

For any m x m matrix B with det B # 0 the solution x = B~b can be expressed as

1
Xj = —F%
det B

det(éj), where Bj has jt column replaced by b.

Def: A matrix A € Z™*" is called unimodular if all mt"-order
minors are 1.

Lemma: If A is unimodular and B is a matrix selecting any m
columns of A, then Bx = b has solutions x € Z™.

Corollary: All basic solutions for the LP have

xg = B~ b € Z™.

Consequence: For A that is unimodular in Case I, we are
guaranteed that the related LP has only integer solutions.

Case Il: When constraints given as Ax < b.
Slack variables € put into standard form Ax + € = b.
Express as A% = b, where A = [A; /] and & = [x; £].

Def: A matrix A € Z™*" is called totally unimodular
if all minors of any order k are 1.

Lemma: If A is totally unimodular, then Ais
unimodular.

In these cases standard LP can be used to solve the ILP!
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Integer Linear Programming (Unimodular Case)

DY \ D DI Update
A T T v o
Example oo o e ST S y;:yu—ﬁypj, ifi #p
in —2x; — D + Yol e
min 2x1 — 5x2 T Yo = v ifi =p,
subject x; +x3 = 4 : : : : s,\-? :c,-\',—fch_lN.
X2 + X4 = [§) DRI
x| +x2+x5 =8
X1,X2, X3, X4, X5 > 0
X1,X2, X3, X4, X5 € L
Canonical Tableau iteration: 1 iteration: 2
a1 a a3 a a5 b ap ap a3 as as b a ay a3 a4 as b |al a) a3 ag a5 b
T 0 1 0 04 10 1 0 04 10 1 0 0 4 00 1 1 -1 2
0 101 06 0 1.0 1 06 0 1 0 106 0010 1 06
1 100 18 1 100 138 S r o0t 12 100 -1 1 2
T2 25 0 0 00 Tl-2 -5 0 0 00 rl=2 0 0 5 0 30 Tlo o 0o 3 2 34
B =1{3,4,5} B={3,4,5},q=2 B=1{325},q=1 B={3,2,1}
(canonicalize) ';'T:qQ =16,8],i =[2,3],p=2. ﬁg =[4,2,i=[13,p=3 (final)

Solution: x = [2,6,2,0,0].
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Integer Linear Programming: Gomory Cuts

ILP
min cTx
subject Ax=Db
x>0, xeZ".

Gomory Cutting-Plane Method

For any feasible solution x

n
x; + Z yiiXj = Yio < from [Ax = b],.
Jj=m+1

The optimal solution x* of LP is given by x* = yjo, i < m.

If x* is not an integer how can we modify the LP to reject
this solution, but retain all integer feasible points?

For any feasible point
n
X+ Y il % < v
j=m+1

Follows since I_y,JJ <y and x; > 0.

For any integer feasible point

n
xi+ Y il % < Lol -
j=m+1
For the non-integer LP optimal basic point x*, we have
X" =yio> o], i<mand x*=0,i>m+1, so

n
X+ Z Lyi] X7 > Lvio] -
j=m+1

We introduce the Gomory Constraint to the LP

n

Z (vi — |vii]) % = vio — Lviol -

Jj=m+1

This rejects the x* of the LP while preserving all
integer feasible points x.

In practice, we solve the modified LP with new slack

variable x,+1 and add constraint to Ax = b,
n

Z (y,'_,' - Ly,'jJ) Xj — Xn+1 = Yio — \_YIOJ .

j=mt1
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Integer Linear Programming: Summary

ILP
min c"x
subject Ax =b

x>0, xeZ.

LP Approaches Discussed
@ ILPs can in general be challenging to solve.

@ How might we use LPs to approach solving
ILPs?

@ When can we relax the x € Z conditions and
still obtain integer solutions? (Unimodularity)

@ If this fails, what modifications of LPs can be
used to continue search for integer solutions?
(Gomory Cuts)

Summary

Qo

(*]

ILPs arise in many problems with discrete
possibilities.

Given mathematical structure in many
applications the ILPs can be relaxed and solved
or approximated by modified LPs.

Other strategies include: branch-and-bound,
other cutting-plane rules, machine learning
methods, and heuristic search rules.
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