Optimization

Paul J. Atzberger

University of California Santa Barbara (UCSB)

Integer Linear Programming (ILP)

Motivations

- Many problems only allow for a discrete set of possibilities.
- Examples include the number of people, products, or vehicles in planning.
- Also, distinct types, categories, or outcomes.

Integer Linear Program (ILP)

min
$$\mathbf{c}^T \mathbf{x}$$

subject $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} > 0, \ \mathbf{x} \in \mathbb{Z}$.

Gleixner 2018

Kuo 2024

Approaches to ILPs

- Relax the $\mathbf{x} \in \mathbb{Z}$ condition and solve LP for $\tilde{\mathbf{x}}^*$.
- Approximate the solution by $\bar{\mathbf{x}}^* = [\tilde{\mathbf{x}}^*]$.
- Use LP to approximate the solution and if not in Z introduce successive new constraints to rule-out non-integer points (Gomory Cuts).
- Other strategies include: branch-and-bound, other cutting-plane rules, and heuristic search.

Examples and Applications

- Planning / scheduling: Traveling Salesman Problem (TSP).
- Theorem provers / logic: Satisfiability (SAT), 0-1 ILP.
- Resource allocation: cell phone networks, job scheduling.

Integer Linear Programming: Example

ILP

min
$$\mathbf{c}^T \mathbf{x}$$
 subject $A\mathbf{x} = \mathbf{b}$

$$x > 0, x \in \mathbb{Z}.$$

Example (LP1)

min
$$-x_1 - 2x_2$$

subject $-2x_1 + x_2 + x_3 = 2$
 $-x_1 + x_2 + x_4 = 3$
 $x_1 + x_5 = 3$
 $\mathbf{x} > 0$. $\mathbf{x} \in \mathbb{Z}$.

Canonical Tableau

	a_1			a4	a ₅	Ь	
	-2	1	1	0		2	
	-1	1	0	1	0	3	
	1	0	0	0	1	3	-
c^T	-1	-2	0	0	0	0	
$\mathcal{B} = (car$	1 -1 {3, 4 tonica	, 5} alize	:)				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ь
-2 1 1 0 0	2
-1 1 0 1 0	3
1 0 0 0 1	3
$r^{T} \begin{vmatrix} -1 & -2 & 0 & 0 & 0 \end{vmatrix}$	0
$\mathcal{B} = \{3, 4, 5\}, \ q = 2$	
$\frac{y_{i0}}{y_{i-}} = [2, 3], i = [1, 2], p =$	1.

Update

Update
$$y_{ij}^{+} = y_{ij} - \frac{y_{iq}}{y_{pq}} y_{pj}, \quad \text{if } i \neq p$$

$$y_{pj}^{+} = \frac{y_{pj}}{y_{pq}}, \quad \text{if } i = p,$$

$$s_{N}^{T} = c_{N}^{T} - c_{B}^{T} B^{-1} N.$$

iteration:1

	a_1	a_2	<i>a</i> ₃	a4	a ₅	Ь
	-2	1	1	0	0	2
	1	0	-1	1	0	1
	1	0	0	0	1	3
r^T	$\begin{vmatrix} 1 \\ 1 \\ -5 \\ \{2, 4 \end{substitute} $	0	2	0	0	4
$\mathcal{B} =$	{2,4	1,5}	, q =	= 1,		
y _{i0} y _{iq}	= [1,	3], <i>i</i>	= [2	2, 3],	<i>p</i> =	2.

iteration:2

	ittera	LIOII					
		a_1	a_2	a_3	<i>a</i> ₄	a ₅	Ł
		0	1	-1	2	0	4
		1	0	-1	1	0	1
\rightarrow		0		1		1	2
	r^T	0	0	-3	5	0	ç
	$\mathcal{B} =$	{2,	1, 5	$\}, q$	= 3,		
	y _{i0} y _{iq}	= [2], i =	= [3],	p =	3.	

iteration:3

	a ₁	a_2	a ₃	a_4 1 0 -1 2 final	a ₅	Ь
	0	1	0	1	1	6
	1	0	0	0	1	3
	0	0	1	-1	1	2
r^T	0	0	0	2	3	15
$\mathcal{B} =$	{2,	1,3	}, (final	.)	

solution (valid)

$$\mathbf{x} = [3, 6, 2, 0, 0]$$

Integer Linear Programming: Example

Example (LP2)

$$\begin{array}{ll} \text{min} & -2x_1-3x_2\\ \text{subject} & x_1+x_3=3\\ & x_1-6x_2+x_4=-3\\ & -9x_1+8x_2+x_5=1\\ & x_1,x_2,x_3,x_4,x_5\geq 0. \end{array}$$

initial-canonical

	a_1	a ₂	<i>a</i> ₃	<i>a</i> ₄	a ₅	3 -3 1 0	
	1	0	1	0	0	3	
	1	-6	0	1	0	-3	
	-9	8	0	0	1	1	\rightarrow
r^T	-2	-3	0	0	0	0	
$\mathcal{B} =$	{3,4	1,5},	q =	2			
<u>Уі0</u> Уіа	$= [\frac{1}{8}]$], <i>i</i> =	[3],	p =	= 3		

iteration 1

	a_1	a_2	a_3	<i>a</i> ₄	a_5	Ł
	1	0	1	0	0	3
	$-\frac{23}{4}$	0	0	1	<u>3</u>	$-\frac{9}{4}$
	$-\frac{9}{8}$	1	0	0	18	18
r^T	$-\frac{43}{8}$	0	0	0	38	38
$\mathcal{B} =$	{3,4,	2},	q =	1		
$\frac{y_{i0}}{y_{ia}}$	= [3],	i =	[1], μ	v =	1	

iteration 2

Integer Linear Programming: Relaxing to LP

min
$$\mathbf{c}^T \mathbf{x}$$

subject
$$A\mathbf{x} = \mathbf{b}$$

$$\boldsymbol{x}\geq 0,\ \boldsymbol{x}\in\mathbb{Z}.$$

LP1

	a_1	a ₂	a ₃	1 0 -1 2	a ₅	Ь		
	0	1	0	1	1	6		
	1	0	0	0	1	3	_	solution (valid):
	0	0	1	-1	1	2	7	$\mathbf{x} = [3, 6, 2, 0, 0]$
r^T	0	0	0	2	3	15		
$\mathcal{B} =$	{2,	1,3	}, (final)				

LP2

	a_1	a ₂	<i>a</i> ₃	a4	a ₅	Ь		
	1	0	1	0	0	3		
	0	0	23 4	1	34	15		solution (fails):
	0	1	98	0	1 8	$\frac{7}{2}$	\rightarrow	$\mathbf{x} = \left[3, \frac{7}{2}, 0, 15, 0\right].$
r^T	0	0	43 8	0	38	3 15 7 2 33 2		
$\mathcal{B} =$								

Undate

$$y_{ij}^{+} = y_{ij} - \frac{y_{iq}}{y_{pq}} y_{pj}, \quad \text{if } i \neq p$$

$$y_{pj}^{+} = \frac{y_{pj}}{y_{pq}}, \quad \text{if } i = p,$$

$$s_{N}^{T} = c_{N}^{T} - c_{B}^{T} B^{-1} N.$$

Relaxing ILPs to LPs

- Suppose we ignore the integer constraint?
- Often we still obtain integer solutions, but this can fail!
- When can we relax integer constraints? Still guarantee integer solutions $\mathbf{x}^* \in \mathbb{Z}$?

Modifications of LPs

- When LP fails, how can we augment the problem to continue search for integer solutions?
- There are many strategies used in practice.

Integer Linear Programming (ILP)

$$\label{eq:local_local_local} \begin{split} & \textbf{ILP} \\ & \text{min} & & \textbf{c}^T \textbf{x} \\ & \text{subject} & & & & \textbf{A} \textbf{x} = \textbf{b} \\ & & & & & & & \textbf{x} \geq 0, \ \ \textbf{x} \in \mathbb{Z}. \end{split}$$

Theorem (Cramer's Rule

For any $m \times m$ matrix B with $\det B \neq 0$ the solution $\mathbf{x} = B^{-1}\mathbf{b}$ can be expressed as

$$x_j = \frac{1}{\det B} \det(\hat{B}_j)$$
, where \hat{B}_j has j^{th} column replaced by **b**.

Proof: Let $D_j(\mathbf{v}) = D_j(v_1, v_2, \dots, v_m) = \det(\hat{B}_j(\mathbf{v}))$, where $\hat{B}_j(\mathbf{v})$ denotes replacing column j with the vector \mathbf{v} . If we take $\mathbf{v} = \mathbf{B}_j$ then $D_j(\mathbf{B}_j) = \det(B)$. Since the determinant is linear in any given column j, we have $D_i(v_1, v_2, \dots, v_m) = C_{1j}v_1 + \dots + C_{mj}v_m$.

Another useful property is that if we let $\mathbf{v} = \mathbf{B}_k$ with $k \neq j$ then $D_j(\mathbf{B}_k) = 0$. We consider the linear system $B\mathbf{x} = \mathbf{b}$,

$$B_{11}x_1 + B_{12}x_2 + \cdots + B_{1m}x_m = b_1$$

 $B_{21}x_1 + B_{22}x_2 + \cdots + B_{2m}x_m = b_2$
 \vdots \vdots \vdots \vdots

$$B_{m1}x_1 + B_{m2}x_2 + \cdots + B_{mm}x_m = b_m$$

If we multiply the i^{th} row by C_{ij} and sum, this yields $\sum_k D_i(\mathbf{B}_k) x_k = \det(B) x_i = D_i(\mathbf{b}) = \det(\hat{B}_i)$.

Integer Linear Programming:

- For basic feasible solution we have $\mathbf{x}_B = B^{-1}\mathbf{b}$.
- Consider matrix B and b with only integer coefficients.
- In this case, det(B) and $det(\hat{B}_i)$ are integers.
- If $det(B) = \pm 1$ then x_i is an integer.

Integer Linear Programming (Unimodular Case)

ILP (Case I)ILP (Case II)min
$$\mathbf{c}^T \mathbf{x}$$
min $\mathbf{c}^T \mathbf{x}$ subject $A\mathbf{x} = \mathbf{b}$ subject $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} > 0, \ \mathbf{x} \in \mathbb{Z}.$ $\mathbf{x} > 0, \ \mathbf{x} \in \mathbb{Z}.$

Theorem (Cramer's Rule

For any $m \times m$ matrix B with $\det B \neq 0$ the solution $\mathbf{x} = B^{-1}\mathbf{b}$ can be expressed as

$$x_j = rac{1}{\det B} \det(\hat{B_j}), \;\; ext{where } \hat{B_j} \; ext{has } j^{th} \; ext{column replaced by } \mathbf{b}.$$

Def: A matrix $A \in \mathbb{Z}^{m \times n}$ is called unimodular if all m^{th} -order minors are ± 1 .

Lemma: If A is unimodular and B is a matrix selecting any m columns of A, then $B\mathbf{x} = \mathbf{b}$ has solutions $\mathbf{x} \in \mathbb{Z}^m$.

Corollary: All basic solutions for the LP have $\mathbf{x}_B = B^{-1}\mathbf{b} \in \mathbb{Z}^m$.

Consequence: For *A* that is unimodular in Case I, we are guaranteed that the related **LP** has only integer solutions.

Case II: When constraints given as $Ax \leq b$.

Slack variables $\boldsymbol{\xi}$ put into standard form $A\mathbf{x} + \boldsymbol{\xi} = \mathbf{b}$.

Express as $\tilde{A}\tilde{\mathbf{x}} = \mathbf{b}$, where $\tilde{A} = [A; I]$ and $\tilde{\mathbf{x}} = [\mathbf{x}; \boldsymbol{\xi}]$.

Def: A matrix $A \in \mathbb{Z}^{m \times n}$ is called **totally unimodular** if all minors of any order k are ± 1 .

Lemma: If A is totally unimodular, then \tilde{A} is unimodular.

In these cases standard LP can be used to solve the ILP!

Integer Linear Programming (Unimodular Case)

Example

$$\begin{aligned} & \min \ -2x_1 - 5x_2 \\ & \text{subject} \ x_1 + x_3 = 4 \\ & x_2 + x_4 = 6 \\ & x_1 + x_2 + x_5 = 8 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \\ & x_1, x_2, x_3, x_4, x_5 \in \mathbb{Z} \end{aligned}$$

Canonical Tableau

	a_1	a_2	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> 5	Ь	
	1	0	1	0	0	4	
	0	1	0	1	0	6	
	1	1	0	0	1	8	
c^T	-2	-5	0	0	0	0	
$c^{T}\begin{vmatrix} -2 & -5 & 0 & 0 & 0 & 0 \\ \mathcal{B} = \{3, 4, 5\} \\ \text{(canonicalize)} \end{vmatrix}$							
(can	onic	alize)				

Solution: x = [2, 6, 2, 0, 0].

iteration: 1

itera	tion.							
	a_1	a_2	<i>a</i> ₃	<i>a</i> ₄	a ₅	Ь		
	1	0	1	0	0	4		
	0	1	0	1	0	6		
	1	0		-1	1	2		
r^T	-2	0	0	5	0	30		
$\mathcal{B} = \{3, 2, 5\}, q = 1$								
yio	= [4,	2], i	= [1, 3],	p =	= 3		

Integer Linear Programming: Gomory Cuts

min
$$\mathbf{c}^T \mathbf{x}$$

subject $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0, \ \mathbf{x} \in \mathbb{Z}^n$.

Gomory Cutting-Plane Method

For any feasible solution x

$$x_i + \sum_{j=m+1}^n y_{ij} x_j = y_{i0} \leftarrow \text{from } [A\mathbf{x} = \mathbf{b}]_i.$$

The **optimal solution** \mathbf{x}^* **of LP** is given by $x_i^* = y_{i0}, i \leq m$.

If x^* is **not** an **integer** how can we modify the LP to reject this solution, but retain all integer feasible points?

For any feasible point

$$x_i + \sum_{j=m+1}^n \lfloor y_{ij} \rfloor x_j \leq y_{i0}.$$

Follows since $|y_{ii}| \le y_{ii}$ and $x_i \ge 0$.

For any integer feasible point

$$x_i + \sum_{j=m+1}^n \lfloor y_{ij} \rfloor x_j \leq \lfloor y_{i0} \rfloor.$$

For the **non-integer** LP optimal basic point \mathbf{x}^* , we have $x_i^* = y_{i0} > \lfloor y_{i0} \rfloor$, $i \leq m$ and $x_i^* = 0$, $i \geq m+1$, so $x_i^* + \sum_{i=1}^{n} \lfloor y_{ij} \rfloor x_j^* > \lfloor y_{i0} \rfloor$.

We introduce the Gomory Constraint to the LP

$$\sum_{j=m+1}^{n} (y_{ij} - \lfloor y_{ij} \rfloor) x_j \ge y_{i0} - \lfloor y_{i0} \rfloor.$$

This rejects the x* of the LP while preserving all integer feasible points x.

In practice, we solve the modified LP with new slack variable x_{n+1} and add constraint to $A\mathbf{x} = \mathbf{b}$,

$$\sum_{i=m+1}^{n} (y_{ij} - \lfloor y_{ij} \rfloor) x_j - x_{n+1} = y_{i0} - \lfloor y_{i0} \rfloor.$$

Integer Linear Programming: Summary

LP Approaches Discussed

- ILPs can in general be challenging to solve.
- How might we use LPs to approach solving ILPs?
- When can we relax the $x \in \mathbb{Z}$ conditions and still obtain integer solutions? (Unimodularity)
- If this fails, what modifications of LPs can be used to continue search for integer solutions? (Gomory Cuts)

Summary

- ILPs arise in many problems with discrete possibilities.
- Given mathematical structure in many applications the ILPs can be relaxed and solved or approximated by modified LPs.
- Other strategies include: branch-and-bound, other cutting-plane rules, machine learning methods, and heuristic search rules.