Finite Element Methods: Numerical Exercises
Paul J. Atzberger

1. Show that each of the elements have the stated regularity as follows:

(a) Lagrange triangular element based on Py with k4 1 distinct nodes along each edge
is C°.
(b) Hermite triangular element based on Ps is C°.

(c) Argyris triangular element based on Ps is C'! in the normal direction across edges.
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Figure 1: Triangular Elements.

2. There are many ways to develop quadratures for triangulations 7 to approximate
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(a) Consider Duffy’s Transform from a reference triangular element to a quadrilateral
element as shown in Figure 2. This is given by
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where n € [0,1], £ € [0,1 — 7], &,7 € [-1,1]. We can express integration over the
triangular element as

/Ol/ol_nf(é,n)dédnzf_ll /_if(é,n)J(f’,n’)dg’dn’,

where the Jacobian for Duffy’s Transform is given by J(¢',7') = %(1 —n').



Figure 2: Duffy’s Transform.

Use Gaussian quadratures for the cases of 2 and 3 nodes to construct quadratures
for the iterated integrals for the quadrilateral. Determine the corresponding nodes
and weights for the triangle and construct a quadrature table for the triangular
elements for the Gaussian quadrature cases.

(b) Alternatively, we can use for the weights wy and nodes x; from Table 1. For
n = 4,7, compare this with the Duffy’s Transform approach for the test functions
(i) 3z3y?, (ii) sin(mzy/2), and (iii) exp (—3z* + 3y?). In each case, which yields the
more accurate approximation.

d|nlk Xk wr | k X} wg | k X wg | k X Wi,
111 (1/31/3) 1/2
231 (1/6,1/6) 1/6|2 (2/31/6) 1/6 |3 (1/62/3) 1/6
31411 (1/3,1/3) -9/32 |2 (3/5,1/5) 25/96 | 3 (1/5,3/5) 25/96 | 4 (1/5,1/5) 25/96
I17 1 (0,0) 1/40 [2  (1/2,0) 1/15|3 (1,00 1/40

4 (1/2,1/2) 1/15|5 (0,1) 1740 |6  (0,1/2) 1/15|7 (1/3,1/3) 9/40

Table 1: Quadratures on triangulations for fol Ol_ml f(x)dx ~ >, f(xk)wk, x = (x1,22). The d is the

quadrature order, n number of nodes, x; nodes, and wy weights. For affine reference element map x =
P(X) with (7;) = To and Jacobian J(X) = |det 9y/0X]|, the quadrature is applied using pr F(X)dX =

Sy F ()T
3. Consider the elliptic PDE (Poisson problem) given by
Au(x) = _f(X)v X € Qu u<X> = g(LE), X € an

where Q = [-L,L] x [-L,L] C R? and g(z) are the boundary values. In the Ritz-
Galerkin approximation, we seek a solution u; € V, C V = H}(Q) with

a(uhuw) - <f7 w>L27 Vw S Vha

where a(uy, w) = [, Vxun(x) - Vxw(x)dx and (f,w)2 = [, f(x)w(x)dx. Consider a
basis of functions {¢x}4, for V,. We can represent any v € Vj, by v(x) = Y, v;¢(x),



up(x) = >, wi¢i(x), and approximate f by fi(x) =Y. fi¢i(x). The FEM approxima-
tion wuy, can be expressed as solving the linear system

Au = MTf.

The A is the stiffness matriz given by A;; = a(¢;, ¢;), M is the mass matriz given by
M;j = (i, ¢j) 12, and [u]; = u;, [f]; = fi.

To handle the Dirichlet boundary conditions we need to use that the boundary values
g(x) determine some of the nodal variables. By ordering the nodal indices appropriately,
we can split the system into components as u = [uy,up] and A = [A;|Ag|. The u;
corresponds to the nodal locations interior to the domain {2 and up correspond to
the nodal locations on the boundary 0f). Since the values ug are known, be sure
to move these to the right-hand-side (RHS) of the linear system when solving. By
restricting to the rows of the system for the indices of u;, we obtain the linear system
A[ll[ = Mf — ABuB.

(a) (Meshing) Discretize the domain € into elements T = {7;}}*,, where 7, are trian-
gular elements. For the square domain Q = [—L, L] x [-L, L] C R? one way to
discretize is to define a coarse mesh. A basic algorithm to obtain a more refined dis-
cretization is to loop over each triangle and bisect the edges to obtain four smaller
triangles, see Figure 3. Data structures for this are a list of vertices v; € R? and
tuples (41,42, 43) which give the indices of the vertices of each triangle.

Figure 3: Mesh triangulation and refinement by triangle bisection.

Implement this meshing algorithm for the triangulation in Figure 3. Plot the tri-
angulations when this refinement procedure is done up to n = 5 times.

(b) (Assembly and Quadratures) For the discretization into triangular elements 7 =
{Te}7,, take {¢x}_, to be the nodal basis functions for Lagrange elements with
polynomial shape functions of degree d so that v,|T, € Py. The stiffness matrix
A is obtained through an assembly procedure where we compute the integral by
breaking it into parts summing up the inner-products over each element 7, as
Ay =algi, d5) = >0y fn Vx¢i(x) - Vxoj(x)dx = > ," | Agyj, and similarly, M;; =

(i, 0j) 12 = D01y [ @i(x)bj(x)dx = 3751, Myy;. Integrals are approximated by
high-precision quadratures

Agij = wiVuti(xx) - Vi (xi), Megj =Y wrehi(xi) e (xs)-
k k



The {wy} are the quadrature weights and {x;} are the quadrature nodes. Note
in general the quadrature nodes can differ from the finite element nodes. We use
these approximations to obtain

Au = Mf.

For the case of Lagrange elements using polynomial spaces of degree d, we use
quadratures that have order 2d. This allows for computing the integrals up to
round-off errors. For quadratures on triangulations, see Figure 4 and Table 1.
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Figure 4: Quadrature Nodes.

Using this assembly 4+ quadrature approach, implement codes to compute for a
given triangulation the stiffness and mass matrices when d = 1 and d = 2.

Consider the FEM approximation for the solutions u with L = 7 and (i) u(xy, z2) =
cos(5xy) sin(bxs) and (ii) u(xy,x2) = exp (— cos(3z1) + sin(3z2)). Use f(x) = —Au
evaluated at the nodal points to obtain the numerical data for these test problems.

Make a log-log plot of the solution error vs mesh size h~' = 27" for meshes with
refinements n = 1,2,...,5. What is the exhibited order of accuracy of the Lagrange
FEMs when d =1 and d = 27

(c) (Tterative Methods) To solve approximately
Au = b, where b = Mf,
iterative methods can be used of the form
Bu"™ = Cu" +b.

For convergence, B — C' = A and the spectral radius of B~'C is taken to satisfy
p(B7'C) < 1. Tt is common to decompose the matrix as A = D — L — U, where
D is the diagonal entries, —L the lower entries, and —U the upper entries. A few
example iterative methods are

i. Direct Relaxation with B = I and C' = I+nA, with small enough ns.t. n <2/
or smaller, where X is the largest eigenvalue of A.
ii. Jacobi Iteration with B =D and C = L+ U.
iii. Gauss-Seidel Iteration with B =D + L and C' =U.



Compare these methods for approximating the solution u when L = 7 and (i)
u(xy, x2) = cos(bzy) sin(hzy) and

(i) u(zy,z2) = exp(—cos(3xy) +sin(3zy)). Use f(x) = —Au evaluated at the
nodal points to obtain the numerical data for these test problems.

Make a log-log plot of the number iterations and the error for meshes with n = 5
refinements. How many iterations does each method need to converge to 1% accu-
racy for solving the linear system? We remark that in practice these convergence
rates are further enhanced by using preconditioners.



