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Basic Definitions

The L2(Ω) for a smooth domain Ω, denotes the space of all functions f that are Lebegue
square-integrable

∫
Ω f 2dx < ∞.

We define the L2-inner-product as

(u, v)0 = (u, v)L2 =

∫
Ω
u(x)v(x)dx .

This has the compatible L2-norm

∥u∥2 =
√
(u, u)L2 .

Definition:

A function u ∈ L2 has as its weak derivative v = Dαu = ∂αu if

(v ,w)L2 = (−1)|α| (u, ∂αw)L2 , ∀w ∈ C∞
0 .

C∞ is the space of all infinitely continuously differentiable functions.
The C∞

0 ⊂ C∞ are all functions zero outside a compact set.
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Sobolev Spaces

For any integer m ≥ 0, let Hm be the space of all functions that have weak derivatives ∂αu up
to order m, |α| ≤ m.

We define an inner-product on Hm as

(u, v)m =
∑
|α|≤m

(∂αu, ∂αv).

We define Hm-norm as

∥u∥m =
√
(u, u)m =

√ ∑
|α|≤m

∥∂αu∥2
L2
.

We define k-semi-norm as

|u|k =

√ ∑
|α|=k

(∂αu, ∂αu)0 =

√ ∑
|α|=k

∥∂αu∥2
L2
.

We refer to Hm with this inner-product as a Sobolev space. Also denoted by Wm,2.
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Theorem

Let Ω ⊂ Rn be an open set with piecewise smooth boundary. Let m ≥ 0, then C∞(Ω)
⋂
Hm(Ω) is

dense in Hm(Ω) under the norm ∥ · ∥m.

This means that we can view Hm as the natural extension of working with smooth functions C∞(Ω)
and inner-product (·, ·)m.
The Hm is the completion under ∥ · ∥m.

Definition

Denote the completion of C∞
0 (Ω) under ∥ · ∥m by Hm

0 .

We have the following relations between the function spaces

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) · · · ⊃ Hm(Ω)
q ∪ ∪ ∪

= H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) · · · ⊃ Hm

0 (Ω).
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Sobolev Spaces

We can also define function spaces based on Lp(Ω), C∞, C∞
0 similarly using the norm ∥ · ∥p.

Definition

The Sobolev space denoted by Wm,p (also by Wm
p ) is the collection of functions obtained by

completing C∞(Ω) ⊂ Lp(Ω) under the norm ∥ · ∥m.

Similarly, we obtain Wm,p
0 by completing C∞

0 (Ω) ⊂ Lp(Ω) under ∥ · ∥m.
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Sobolev Spaces

Definition
Consider a given domain Ω and compact sets K ⊂ Ω. We define the set of locally integrable functions
as

L1loc(Ω) := {v |v ∈ L1(K ), ∀K ⊂ Ωo}

These functions can behave poorly near the boundary of Ω as illustrated by v(x) = ϕ(1/dist(x , ∂Ω))
where ϕ(x) = ee

x

which still yields v ∈ L1loc(Ω).

Definition
The p = ∞ norm is given by

∥v∥L∞(Ω) := ess-sup{|v(x)| | x ∈ Ω}

If U = ess-sup(v) then v(x) ≤ U for almost every x ∈ Ω (except set of measure zero).
Example: Let f (x) = 3 on the rationals Q and f (x) = 2 on the positive irrationals R+ \Q and
f (x) = −1 on the negative irrationals R− \Q. We have ess-sup{f (x) | x ∈ Ω} = 2 and
ess-inf{f (x) | x ∈ Ω} = −ess-sup{−f (x) | x ∈ Ω} = −1.
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Sobolev Spaces

Definition
For 1 ≤ p < ∞, we define the Sobolev norm as

∥v∥W k
p
(Ω) :=

 ∑
|α|≤k

∥Dα
wv∥

p
Lp(Ω)

1/p

,

We assume k is a non-negative integer, v ∈ L1loc(Ω), and Dα
wv exists for all |α| ≤ k.

For p = ∞, we define the Sobolev norm as

∥v∥W k
∞(Ω) := max

|α|≤k
∥Dα

wv∥L∞(Ω).
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Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.

Theorem
For k,m are non-negative integers with k ≤ m and p any real number with 1 ≤ p ≤ ∞, we have

Wm
p (Ω) ⊂ W k

p (Ω).

Theorem
For k any non-negative integer and p, q any real numbers with 1 ≤ p ≤ q ≤ ∞, we have

W k
q (Ω) ⊂ W k

p (Ω).

Theorem
For k,m non-negative integers with k < m and and p, q any real numbers with 1 ≤ p < q ≤ ∞, we
have

Wm
q (Ω) ⊂ W k

p (Ω).
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Poincaré-Friedrichs Inequality

Theorem

Poincaré-Friedrichs Inequality: Consider domain Ω ⊂ Q = [0, s]n, Q is cube of side-length
s. Then

∥v∥0 ≤ s|v |1, ∀v ∈ H1
0 (Ω).

This shows the 1-semi-norm bounds the 0-norm.
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Poincaré-Friedrichs Inequality

Theorem

Poincaré-Friedrichs Inequality: Consider domain Ω ⊂ Q = [0, s]n, Q is cube of side-length s. Then

∥v∥0 ≤ s|v |1, ∀v ∈ H1
0 (Ω).

Proof:

Since v ∈ H1
0 and using a point on the boundary (0, x2, x3, . . . , xn) we can express v as

v(x1, x2, . . . , xn) = v(0, x2, . . . , xn) +

∫ x1

0

∂1v(z , x2, . . . , xn)dz =

∫ x1

0

∂1v(z , x2, . . . , xn)dz

By the Cauchy-Swartz inequality we have

|v(x)|2 ≤
(∫ x1

0

∂1v(z , x2, . . . , xn)dz

)2

≤
∫ x1

0

12dz

∫ x1

0

|∂1v(z , x2, . . . , xn)|2dz

≤ s

∫ x1

0

|∂1v(z , x2, . . . , xn)|2dz

We integrate over the cube Q = [0, s]n with v , ∂1v extended to vanish outside of Ω.
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∫ s

0
and note RHS independent of x1∫ s

0
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∫ s
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Poincaré-Friedrichs Inequality

Theorem
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Poincaré-Friedrichs Inequality

Theorem
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0

|v(x)|2dx1 ≤ s2
∫ s

0

|∂1v(z , x2, . . . , xn)|2dz

We integrate over the other components to obtain

∥v∥20 =
∫
Q

|v(x)|2dx ≤ s2
∫
Q

|∂1v(x)|2dx = s2|v |21.

⇒ ∥v∥0 ≤ s|v |1.

■
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Poincaré-Friedrichs Inequality

We can also apply the inequality using the derivatives ṽ = ∂αu to obtain

|∂αu|0 ≤ s|∂1∂αu|0, |α| ≤ m − 1, u ∈ Hm
0 (Ω).

By induction we obtain

Theorem

Poincaré-Friedrichs Inequality II: Consider the domain Ω ⊂ [0, s]n is contained within a cube of
side-length s. Then

|v |0 ≤ ∥v∥m ≤ (1 + s)m|v |m, ∀v ∈ Hm
0 (Ω).

When Ω is bounded, the m-semi-norm |v |m is in fact a proper norm on Hm
0 (Ω).

The norm |v |m is equivalent to ∥v∥m (convergence in one implies convergence in other).
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Sobolev Inequality

Theorem
Sobolev Inequality: Consider a domain Ω ⊂ Rn with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 ≤ p < ∞ such that

k ≥ n, when p = 1

k > n/p, when p > 1.

We then have there is a constant C so that for all u ∈ W k
p (Ω)

∥u∥L∞(Ω) ≤ C∥u∥W k
p (Ω).

Also, for the equivalence class of u in L∞(Ω), there is a representative that is a continuous function.

Significance: Shows that if a function has enough weak derivatives then in fact it can be
viewed as equivalent to a continuous, bounded function.
Also, shows that if we have convergence in ∥ · ∥W k

p (Ω) then also converges in ∥ · ∥L∞(Ω).
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Trace Theorems (boundary conditions)

When working with Lp functions how do we characterize values on the boundary which are sets of
measure zero.

Example: Consider Ω = {(x , y)|x2 + y2 < 1} = {(r , θ)|r < 1, 0 ≤ θ < 2π}.

Lemma

Let Ω be the unit disk. For all u ∈ W 1
2 (Ω) the restriction of u|∂Ω can interpreted as a function in

L2(∂Ω). Furthermore, it satisfies the bound

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
1/2

W 1
2 (Ω)

.

Proof (sketch):
For u ∈ C 1(Ω), consider the restriction to ∂Ω when r ≤ 1,

u(1, θ)2 =

∫ 1

0

∂

∂r

(
r2u(r , θ)2

)
dr =

∫ 1

0

2
(
r2uur + ru2)

)
(r , θ)dr

=

∫ 1

0

2

(
r2u∇u · (x , y)

r
+ ru2)

)
(r , θ)dr ≤

∫ 1

0

2
(
r2|u||∇u|+ ru2)

)
(r , θ)dr
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0

2
(
r2|u||∇u|+ ru2)

)
(r , θ)dr ≤

∫ 1

0

2
(
|u||∇u|+ u2)

)
(r , θ)rdr .

Using polar coordinates and integrating out the θ we obtain∫
∂Ω

u2dθ ≤ 2

∫
Ω

(
|u||∇u|+ u2

)
dxdy .

The norm of function u|∂Ω restricted to the boundary is

∥u∥2L2(∂Ω) :=

∫
∂Ω

u2dθ =

∫ 2π

0

u(1, θ)2dθ.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Lemma

Let Ω be the unit disk. For all u ∈ W 1
2 (Ω) the restriction of u|∂Ω can interpreted as a function in

L2(∂Ω). Furthermore, it satisfies the bound

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
1/2

W 1
2 (Ω)

.

Proof (sketch):

u(1, θ)2 ≤
∫ 1

0

2
(
r2|u||∇u|+ ru2)

)
(r , θ)dr ≤

∫ 1

0

2
(
|u||∇u|+ u2)

)
(r , θ)rdr .

Using polar coordinates and integrating out the θ we obtain

∫
∂Ω

u2dθ ≤ 2

∫
Ω

(
|u||∇u|+ u2

)
dxdy .

The norm of function u|∂Ω restricted to the boundary is

∥u∥2L2(∂Ω) :=

∫
∂Ω

u2dθ =

∫ 2π

0

u(1, θ)2dθ.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Lemma

Let Ω be the unit disk. For all u ∈ W 1
2 (Ω) the restriction of u|∂Ω can interpreted as a function in

L2(∂Ω). Furthermore, it satisfies the bound

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
1/2

W 1
2 (Ω)

.

Proof (sketch):

u(1, θ)2 ≤
∫ 1

0

2
(
r2|u||∇u|+ ru2)

)
(r , θ)dr ≤

∫ 1

0

2
(
|u||∇u|+ u2)

)
(r , θ)rdr .

Using polar coordinates and integrating out the θ we obtain∫
∂Ω

u2dθ ≤ 2

∫
Ω

(
|u||∇u|+ u2

)
dxdy .

The norm of function u|∂Ω restricted to the boundary is

∥u∥2L2(∂Ω) :=

∫
∂Ω

u2dθ =

∫ 2π

0

u(1, θ)2dθ.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Lemma

Let Ω be the unit disk. For all u ∈ W 1
2 (Ω) the restriction of u|∂Ω can interpreted as a function in

L2(∂Ω). Furthermore, it satisfies the bound

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
1/2

W 1
2 (Ω)

.

Proof (sketch):

u(1, θ)2 ≤
∫ 1

0

2
(
r2|u||∇u|+ ru2)

)
(r , θ)dr ≤

∫ 1

0

2
(
|u||∇u|+ u2)

)
(r , θ)rdr .

Using polar coordinates and integrating out the θ we obtain∫
∂Ω

u2dθ ≤ 2

∫
Ω

(
|u||∇u|+ u2

)
dxdy .

The norm of function u|∂Ω restricted to the boundary is

∥u∥2L2(∂Ω) :=

∫
∂Ω

u2dθ =

∫ 2π

0

u(1, θ)2dθ.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Lemma

Let Ω be the unit disk. For all u ∈ W 1
2 (Ω) the restriction of u|∂Ω can interpreted as a function in

L2(∂Ω). Furthermore, it satisfies the bound

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
1/2

W 1
2 (Ω)

.

Proof (sketch):

u(1, θ)2 ≤
∫ 1

0

2
(
r2|u||∇u|+ ru2)

)
(r , θ)dr ≤

∫ 1

0

2
(
|u||∇u|+ u2)

)
(r , θ)rdr .

Using polar coordinates and integrating out the θ we obtain∫
∂Ω

u2dθ ≤ 2

∫
Ω

(
|u||∇u|+ u2

)
dxdy .

The norm of function u|∂Ω restricted to the boundary is

∥u∥2L2(∂Ω) :=

∫
∂Ω

u2dθ =

∫ 2π

0

u(1, θ)2dθ.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Lemma

Let Ω be the unit disk. For all u ∈ W 1
2 (Ω) the restriction of u|∂Ω can interpreted as a function in

L2(∂Ω). Furthermore, it satisfies the bound

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
1/2

W 1
2 (Ω)

.

Proof (sketch):
By Cauchy-Swartz we have
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Ω

|∇u|2dxdy
)1/2

+ 2

∫
Ω

u2dxdy .

Using the arithmetic-geometric mean inequality we have(∫
Ω

|∇u|2dxdy
)1/2

+

(∫
Ω

u2dxdy

)1/2

≤
(
2

∫
Ω

(
|∇u|2 + u2

)
dxdy

)1/2

.

This implies

∥u∥L2(∂Ω) ≤ 81/4∥u∥1/2L2(Ω)∥u∥
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2 (Ω)
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Trace Theorems (boundary conditions)

Theorem
Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with 1 ≤ p ≤ ∞. We then
have there exists a constant C so that

∥v∥Lp(∂Ω) ≤ C∥v∥1−1/p
Lp(Ω) ∥v∥

1/p
W 1

p (Ω), ∀v ∈ W 1
p (Ω).

Definition

Trace-Free Sobolev Spaces: We denote by W̊ 1
p (Ω) the subset of W 1

p (Ω) consisting of the functions
whose trace on the boundary v |∂Ω is zero. In particular,

W̊ 1
p (Ω) = {v ∈ W 1

p (Ω) | v |∂Ω = 0 in L2(∂Ω)}.

Similarly, W̊ k
p (Ω) consists of functions whose derivatives of order k − 1 are in W̊ 1

p (Ω), so that

W̊ k
p (Ω) = {v ∈ W k

p (Ω) | v (α)|∂Ω = 0 in L2(∂Ω), ∀|α| < k}.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Trace Theorems (boundary conditions)

Theorem
Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with 1 ≤ p ≤ ∞. We then
have there exists a constant C so that

∥v∥Lp(∂Ω) ≤ C∥v∥1−1/p
Lp(Ω) ∥v∥

1/p
W 1

p (Ω), ∀v ∈ W 1
p (Ω).

Definition

Trace-Free Sobolev Spaces: We denote by W̊ 1
p (Ω) the subset of W 1

p (Ω) consisting of the functions
whose trace on the boundary v |∂Ω is zero. In particular,

W̊ 1
p (Ω) = {v ∈ W 1

p (Ω) | v |∂Ω = 0 in L2(∂Ω)}.

Similarly, W̊ k
p (Ω) consists of functions whose derivatives of order k − 1 are in W̊ 1

p (Ω), so that

W̊ k
p (Ω) = {v ∈ W k

p (Ω) | v (α)|∂Ω = 0 in L2(∂Ω), ∀|α| < k}.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Trace Theorems (boundary conditions)

Theorem
Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with 1 ≤ p ≤ ∞. We then
have there exists a constant C so that

∥v∥Lp(∂Ω) ≤ C∥v∥1−1/p
Lp(Ω) ∥v∥

1/p
W 1

p (Ω), ∀v ∈ W 1
p (Ω).

Definition

Trace-Free Sobolev Spaces: We denote by W̊ 1
p (Ω) the subset of W 1

p (Ω) consisting of the functions
whose trace on the boundary v |∂Ω is zero. In particular,

W̊ 1
p (Ω) = {v ∈ W 1

p (Ω) | v |∂Ω = 0 in L2(∂Ω)}.

Similarly, W̊ k
p (Ω) consists of functions whose derivatives of order k − 1 are in W̊ 1

p (Ω), so that

W̊ k
p (Ω) = {v ∈ W k

p (Ω) | v (α)|∂Ω = 0 in L2(∂Ω), ∀|α| < k}.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Trace Theorems (boundary conditions)

Theorem
Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with 1 ≤ p ≤ ∞. We then
have there exists a constant C so that

∥v∥Lp(∂Ω) ≤ C∥v∥1−1/p
Lp(Ω) ∥v∥

1/p
W 1

p (Ω), ∀v ∈ W 1
p (Ω).

Definition

Trace-Free Sobolev Spaces: We denote by W̊ 1
p (Ω) the subset of W 1

p (Ω) consisting of the functions
whose trace on the boundary v |∂Ω is zero. In particular,

W̊ 1
p (Ω) = {v ∈ W 1

p (Ω) | v |∂Ω = 0 in L2(∂Ω)}.

Similarly, W̊ k
p (Ω) consists of functions whose derivatives of order k − 1 are in W̊ 1

p (Ω), so that

W̊ k
p (Ω) = {v ∈ W k

p (Ω) | v (α)|∂Ω = 0 in L2(∂Ω), ∀|α| < k}.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/

