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Basic Definitions

The L2(Q) for a smooth domain €, denotes the space of all functions f that are Lebegue
square-integrable [, f2dx < co.
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Basic Definitions

The L2(Q) for a smooth domain €, denotes the space of all functions f that are Lebegue
square-integrable fQ f2dx < 0o. We define the L%-inner-product as

(u,v)o = (u,v)2 = / u(x)v(x)dx.

Q
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Basic Definitions

The L2(Q) for a smooth domain €, denotes the space of all functions f that are Lebegue
square-integrable fQ f2dx < 0o. We define the L%-inner-product as

(u,v)o = (u,v)2 = / u(x)v(x)dx.
Q
This has the compatible L?-norm

lull2 = v/ (u, u) 2.
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Basic Definitions

The L2(Q) for a smooth domain €, denotes the space of all functions f that are Lebegue
square-integrable fQ f2dx < 0o. We define the L%-inner-product as

(u,v)o = (u,v)2 = / u(x)v(x)dx.

Q
This has the compatible L?-norm

lull2 = /(u; u) 2.

Definition:

A function u € L? has as its weak derivative v = Dou = 9%u if

(v,w)2 = (1) (u,0%w),2, Yw € C§°.
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Basic Definitions

The L2(Q) for a smooth domain €, denotes the space of all functions f that are Lebegue
square-integrable fQ f2dx < 0o. We define the L%-inner-product as

(u,v)o = (u,v)2 = / u(x)v(x)dx.

Q
This has the compatible L?-norm

lull2 = /(u; u) 2.

Definition:

A function u € L? has as its weak derivative v = Dou = 9%u if

(v,w)2 = (1) (u,0%w),2, Yw € C§°.

C™ is the space of all infinitely continuously differentiable functions.
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Basic Definitions

The L2(Q) for a smooth domain €, denotes the space of all functions f that are Lebegue
square-integrable fQ f2dx < 0o. We define the L%-inner-product as

(u,v)o = (u,v)2 = / u(x)v(x)dx.

Q
This has the compatible L?-norm

lull2 = /(u; u) 2.

Definition:

A function u € L? has as its weak derivative v = Dou = 9%u if

(v,w)2 = (1) (u,0%w),2, Yw € C§°.

C™ is the space of all infinitely continuously differentiable functions.
The C5° C € are all functions zero outside a compact set.
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Sobolev Spaces

For any integer m > 0, let H™ be the space of all functions that have weak derivatives %u up
to order m, |a| < m.
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Sobolev Spaces

For any integer m > 0, let H™ be the space of all functions that have weak derivatives %u up
to order m, |a| < m.
We define an inner-product on H™ as

(U, v)m = Z (0%, 0%v).

lal<m
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Sobolev Spaces

For any integer m > 0, let H™ be the space of all functions that have weak derivatives %u up

to order m, |a| < m.
We define an inner-product on H™ as

(U, v)m = Z (0%, 0%v).

lal<m

We define H™-norm as

lullm = V(u, )= [ > 0°ull}.

laj<m
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Sobolev Spaces

For any integer m > 0, let H™ be the space of all functions that have weak derivatives %u up
to order m, |a| < m.

We define an inner-product on H™ as
(U, v)m = Z (0%, 0%v).
la|<m
We define H™-norm as
ullm =V (u,0)m = | > 0w,
la|<m
We define k-semi-norm as

lulk = Z (0%u, 0%u) Z (|0 ul|2,.

|laf=k o=k
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Sobolev Spaces

For any integer m > 0, let H™ be the space of all functions that have weak derivatives %u up
to order m, |a| < m.
We define an inner-product on H™ as

(uyv)m = Z (0%u, 0%v)
la|<m
We define H™-norm as
ullm =V (u,0)m = | > 0w,
la|<m
We define k-semi-norm as

ule = | (070, 07u) Z |92 ul)3,.

|a|=k lal=

We refer to H™ with this inner-product as a Sobolev space. Also denoted by W™?2,
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Let Q C R" be an open set with piecewise smooth boundary. Let m > 0, then C*(Q) (" H™(Q) is
dense in H™(2) under the norm || - || -
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Let Q C R" be an open set with piecewise smooth boundary. Let m > 0, then C*(Q) (" H™(Q) is
dense in H™(2) under the norm || - || -

This means that we can view H™ as the natural extension of working with smooth functions C*°(Q)
and inner-product (-, -)m.
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Let Q C R" be an open set with piecewise smooth boundary. Let m > 0, then C*(Q) (" H™(Q) is
dense in H™(2) under the norm || - || -

This means that we can view H™ as the natural extension of working with smooth functions C*°(Q)
and inner-product (-, *)m.
The H™ is the completion under || - || .
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Let Q C R" be an open set with piecewise smooth boundary. Let m > 0, then C*(Q) (" H™(Q) is
dense in H™(2) under the norm || - || -

This means that we can view H™ as the natural extension of working with smooth functions C*°(Q)
and inner-product (-, -)m.

The H™ is the completion under || - || .

Definition

Denote the completion of C§°(2) under || - ||, by HY.
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Sobolev Spaces

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Let Q C R" be an open set with piecewise smooth boundary. Let m > 0, then C*(Q) (" H™(Q) is
dense in H™(2) under the norm || - || -

This means that we can view H™ as the natural extension of working with smooth functions C*°(Q)
and inner-product (-, -)m.

The H™ is the completion under || - || .

Definition

Denote the completion of C§°(2) under || - ||, by HY.

We have the following relations between the function spaces

[2(Q) = HQ) > HY{(Q) > H}Q) --- > H"(Q)
I U U U
= HYQ) D H}Q) D H}Q) - D HP(Q.
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Sobolev Spaces

We can also define function spaces based on LP(2), C*°, C5° similarly using the norm || - ||,.
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Sobolev Spaces

We can also define function spaces based on LP(2), C*°, C5° similarly using the norm || - ||,.

Definition

The Sobolev space denoted by W™P (also by W[;") is the collection of functions obtained by
completing C*°(Q2) C LP(2) under the norm || - || .
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Sobolev Spaces

We can also define function spaces based on LP(2), C*°, C5° similarly using the norm || - ||,.

Definition

The Sobolev space denoted by W™P (also by W[;") is the collection of functions obtained by
completing C*°(Q2) C LP(2) under the norm || - || .

Similarly, we obtain W,™"” by completing C§°(2) C LP(2) under || - || m.
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Sobolev Spaces

Definition
Consider a given domain € and compact sets K C 2. We define the set of locally integrable functions
as

LE(Q) = {v|v € [}(K), VK C Q°}
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Sobolev Spaces

Definition
Consider a given domain € and compact sets K C 2. We define the set of locally integrable functions
as

LE(Q) = {v|v € [}(K), VK C Q°}

These functions can behave poorly near the boundary of Q as illustrated by v(x) = ¢(1/dist(x, 9Q))
where ¢(x) = e which still yields v € L} ().
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Sobolev Spaces

Definition
Consider a given domain € and compact sets K C 2. We define the set of locally integrable functions
as

LE(Q) = {v|v € [}(K), VK C Q°}

These functions can behave poorly near the boundary of Q as illustrated by v(x) = ¢(1/dist(x, 9Q))
where ¢(x) = e which still yields v € LL_(Q).

loc

Definition
The p = oo norm is given by

[[Vlleoe (@) == ess-sup{[v(x)] | x € 2}
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Sobolev Spaces

Definition
Consider a given domain € and compact sets K C 2. We define the set of locally integrable functions
as

LE(Q) = {v|v € [}(K), VK C Q°}

These functions can behave poorly near the boundary of Q as illustrated by v(x) = ¢(1/dist(x, 9Q))
where ¢(x) = e which still yields v € LL_(Q).

loc

Definition

The p = oo norm is given by

[[Vlleoe (@) == ess-sup{[v(x)] | x € 2}

If U= ess-sup(v) then v(x) < U for almost every x € Q (except set of measure zero).
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Sobolev Spaces

Definition
Consider a given domain € and compact sets K C 2. We define the set of locally integrable functions
as

LE(Q) = {v|v € [}(K), VK C Q°}

These functions can behave poorly near the boundary of Q as illustrated by v(x) = ¢(1/dist(x, 9Q))
where ¢(x) = e which still yields v € LL_(Q).

loc

Definition

The p = oo norm is given by

[[Vlleoe (@) == ess-sup{[v(x)] | x € 2}

If U= ess-sup(v) then v(x) < U for almost every x € Q (except set of measure zero).
Example: Let f(x) = 3 on the rationals Q and f(x) = 2 on the positive irrationals R* \ Q and
f(x) = —1 on the negative irrationals R~ \ Q.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Sobolev Spaces

Definition
Consider a given domain € and compact sets K C 2. We define the set of locally integrable functions
as

LE(Q) = {v|v € [}(K), VK C Q°}

These functions can behave poorly near the boundary of Q as illustrated by v(x) = ¢(1/dist(x, 9Q))
where ¢(x) = e which still yields v € LL_(Q).

loc

Definition

The p = oo norm is given by

[[Vlleoe (@) == ess-sup{[v(x)] | x € 2}

If U= ess-sup(v) then v(x) < U for almost every x € Q (except set of measure zero).
Example: Let f(x) = 3 on the rationals Q and f(x) = 2 on the positive irrationals R* \ Q and
f(x) = —1 on the negative irrationals R~ \ Q. We have ess-sup{f(x) | x € Q} =2
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Sobolev Spaces

Definition

Consider a given domain £ and compact sets K C Q. We define the set of locally integrable functions
as
LL.() = {vlv € LX(K), YK € 0%}

These functions can behave poorly near the boundary of Q as illustrated by v(x) = ¢(1/dist(x, 9Q))
where ¢(x) = e which still yields v € LL_(Q).

loc

Definition

The p = oo norm is given by

[VllLoo(a) := ess-sup{|v(x)| | x € 2}

If U= ess-sup(v) then v(x) < U for almost every x € Q (except set of measure zero).
Example: Let f(x) = 3 on the rationals Q and f(x) = 2 on the positive irrationals R* \ Q and
f(x) = —1 on the negative irrationals R~ \ Q. We have ess-sup{f(x) | x € Q} =2 and
ess-inf{f(x) | x € Q} = —ess-sup{—f(x) | x € Q} = —1.
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Sobolev Spaces

Definition
For 1 < p < oo, we define the Sobolev norm as

1/p

Wlwe(@ = | 32 108vIE gy |

o <k
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Sobolev Spaces

Definition
For 1 < p < oo, we define the Sobolev norm as
1/p
IV = | 32 105Vl | -

o <k

We assume k is a non-negative integer, v € Ll (), and D2v exists for all |a| < k.

loc
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Sobolev Spaces

Definition
For 1 < p < oo, we define the Sobolev norm as
1/p

Ivllws (@) = | D I1D5vIIEs g

o <k

We assume k is a non-negative integer, v € Ll (), and D2v exists for all |a| < k.

loc

For p = oo, we define the Sobolev norm as

(vl Wk (Q) ‘= ‘a@( \|D$V||Loo(n)~
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Sobolev Spaces

Definition
The Sobolev space is defined as

W (Q) = {v € Lee(Q) | Ivliwg) < o0}

loc
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Sobolev Spaces

Definition
The Sobolev space is defined as

W (Q) = {v € Lee(Q) | Ivliwg) < o0}

loc

Definition
For 1 < p < oo, we define the Sobolev semi-norm as

1/p

ws@ = | 3 IDevIEg |
|a|=k
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Sobolev Spaces

Definition
The Sobolev space is defined as

W (Q) = {v € Lee(Q) | Ivliwg) < o0}

loc

Definition

For 1 < p < oo, we define the Sobolev semi-norm as
1/p

ws@ = | 3 IDevIEg |
|a|=k

For p = oo, the Sobolev semi-norm as

|V|W§o(n) =

max || Dy v|| 1o (q)-
|a|=k
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Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.
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Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.

For k, m are non-negative integers with kK < m and p any real number with 1 < p < oo, we have

W (Q) C Wi ().
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Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.

For k, m are non-negative integers with kK < m and p any real number with 1 < p < oo, we have

W (Q) C Wi ().

For k any non-negative integer and p, g any real numbers with 1 < p < g < oo, we have

WE(Q) C WE(Q).
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Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.

For k, m are non-negative integers with kK < m and p any real number with 1 < p < oo, we have

W (Q) C Wi ().

For k any non-negative integer and p, g any real numbers with 1 < p < g < oo, we have

WE(Q) C WE(Q).

For k, m non-negative integers with k < m and and p, g any real numbers with 1 < p < g < o0, we
have

W (Q) C Wi ().

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C Q = [0, s]”, Q is cube of side-length
s. Then

||V||0 < S|V’1, Vv € H&(Q)
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C Q = [0, s]”, Q is cube of side-length
s. Then

||V”0 < S|V’1, Vv € H&(Q)

This shows the 1-semi-norm bounds the 0-norm.
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

vilo < slvl1, Vv € HA(R).

Proof:
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

vilo < slvl1, Vv € HA(R).

Proof: Since v € H} and using a point on the boundary (0, x2, x3, . . ) we can express v as

v(xy, X0, oy Xn) = v(O,Xz,...,x,,)Jr/ OMv(z, X0, ..., Xn dz—/ OMv(z,xa,. .., xp)dz
0

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

vilo < slvl1, Vv € HA(R).

Proof: Since v € H} and using a point on the boundary (0, x2, x3, . . ) we can express v as

v(xy, X0, oy Xn) = v(O,Xz,...,x,,)Jr/ OMv(z, X0, ..., Xn dz—/ OMv(z,xa,. .., xp)dz
0

By the Cauchy-Swartz inequality we have

X1 2 X1 X1
x)|2§</0 81v(z,x2,...,x,,)dz) < /0 12dz/0 10 v(z, X0, . . ., xp)|?dz
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

vilo < slvl1, Vv € HA(R).

Proof: Since v € H} and using a point on the boundary (0, x2, x3, . . ) we can express v as

v(xy, X0, oy Xn) = v(O,Xz,...,x,,)Jr/ OMv(z, X0, ..., Xn dz—/ OMv(z,xa,. .., xp)dz
0

By the Cauchy-Swartz inequality we have

X1 2
2 < (/ 81v(z,x2,...,x,,)dz)
0

IN

X1 X1
/ 12dz/ 10 v(z, X0, . . ., xp)|?dz
0 0

x1
s/ 10 v(z, X2, . . ., xp)|?dz
0

IN
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

vilo < slvl1, Vv € HA(R).

Proof: Since v € H} and using a point on the boundary (0, x2, x3, . . ) we can express v as

v(xy, X0, oy Xn) = V(O,xz,...,x,,)Jr/ OMv(z, X0, ..., Xn dz—/ OMv(z,xa,. .., xp)dz
0

IN

By the Cauchy-Swartz inequality we have
X1 X1
/ 12dz/ 10 v(z, X0, . . ., xp)|?dz
0 0

X1 2
2 < (/ 81v(z,x2,...,x,,)dz)
0
x1
s/ 10 v(z, X2, . . ., xp)|?dz
0

We integrate over the cube @ = [0, s]” with v, 9'v extended to vanish outside of Q.

IN
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C Q = [0, s]”, Q is cube of side-length s. Then

Ivllo < slv]1, Vv € H3(R).

Proof:

A

X1 2 X1 X1
|v(x)|2§</0 Blv(z,X2,...,X,,)dz> < /0 12dz/0 10 v(z, X0, . . ., Xp)|?dz

S
5/ |0'v(z, X0, . . ., Xn)|?dz
0

IN
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C Q = [0, s]”, Q is cube of side-length s. Then

Ivllo < slv]1, Vv € H3(R).

Proof:

IN

X1 2 X1 X1
lv(x))? < </0 Blv(z,X2,...,X,,)dz> /0 12dz/0 10 v(z, X0, . . ., Xp)|?dz

S
5/ |0'v(z, X0, . . ., Xn)|?dz
0

IN

We now integrate both sides over fos and note RHS independent of x;

Paul J. Atzberger, UCSB Finite Element Methods

http://atzberger.org/


http://atzberger.org/

Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C Q = [0, s]”, Q is cube of side-length s. Then

Ivllo < slv]1, Vv € H3(R).

X1 X1
/ 12dz/ 10 v(z, X0, . . ., Xp)|?dz
0 0

S
5/ |0'v(z, X0, . . ., Xn)|?dz
0

Proof:

IN

X1 2
VR < ([ otz o)

IN

We now integrate both sides over fos and note RHS independent of x;

s s
/ lv(x)]?dxy < 52/ 0'v(z, %2, ..., Xn)|?dz
0 0
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

[v]lo < slvl1, Vv € H3(RQ).

Proof:

S s
/ lv(x)]?dxy < 52/ 10 v(z, %2, ..., Xn)|?dz
0 0
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

[v]lo < slvl1, Vv € H3(RQ).

Proof:

S s
/ lv(x)]?dxy < 52/ 10 v(z, %2, ..., Xn)|?dz
0 0

We integrate over the other components to obtain
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

[v]lo < slvl1, Vv € H3(RQ).

Proof:

S s
/ lv(x)]?dxy < 52/ 10 v(z, %2, ..., Xn)|?dz
0 0

We integrate over the other components to obtain

IvIE = /Q Vx)PRdx < 82 /Q v Pdx = 2|v 2.
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Poincaré-Friedrichs Inequality

Poincaré-Friedrichs Inequality: Consider domain Q C @ = [0, s]", Q is cube of side-length s. Then

[v]lo < slvl1, Vv € H3(RQ).

Proof:

S s
/ lv(x)]?dxy < 52/ 10 v(z, %2, ..., Xn)|?dz
0 0

We integrate over the other components to obtain

IvIE = /Q Vx)PRdx < 82 /Q v Pdx = 2|v 2.

= [Ivllo < slvh.
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Poincaré-Friedrichs Inequality

We can also apply the inequality using the derivatives ¥ = 9%u to obtain
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Poincaré-Friedrichs Inequality

We can also apply the inequality using the derivatives ¥ = 9%u to obtain

|0%ulp < 5|0'0%ulo, |a] < m—1, ue HF(Q).
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We can also apply the inequality using the derivatives ¥ = 9%u to obtain
|0%ulp < 5|0'0%ulo, |a] < m—1, ue HF(Q).

By induction we obtain
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Poincaré-Friedrichs Inequality

We can also apply the inequality using the derivatives ¥ = 9%u to obtain
|0%ulp < 5|0'0%ulo, |a] < m—1, ue HF(Q).

By induction we obtain

Poincaré-Friedrichs Inequality Il: Consider the domain Q C [0, s]” is contained within a cube of
side-length s. Then

Vo < ||Vlim < (14 5)7|v|m, Vv € HJ"(Q2).
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Poincaré-Friedrichs Inequality

We can also apply the inequality using the derivatives ¥ = 9%u to obtain
|0%ulp < 5|0'0%ulo, |a] < m—1, ue HF(Q).

By induction we obtain

Poincaré-Friedrichs Inequality Il: Consider the domain Q C [0, s]” is contained within a cube of
side-length s. Then

Vo < ||Vlim < (14 5)7|v|m, Vv € HJ"(Q2).

When Q is bounded, the m-semi-norm |v|,, is in fact a proper norm on H{'(2).
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Poincaré-Friedrichs Inequality

We can also apply the inequality using the derivatives ¥ = 9%u to obtain
|0%ulp < 5|0'0%ulo, |a] < m—1, ue HF(Q).

By induction we obtain

Poincaré-Friedrichs Inequality Il: Consider the domain Q C [0, s]” is contained within a cube of
side-length s. Then

Vo < ||Vlim < (14 5)7|v|m, Vv € HJ"(Q2).

When Q is bounded, the m-semi-norm |v|,, is in fact a proper norm on H{'(2).
The norm |v|,, is equivalent to ||v||, (convergence in one implies convergence in other).
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n, whenp=1
k > n/p, when p > 1.
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Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n, whenp=1

k > n/p, when p > 1.

We then have there is a constant C so that
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n, whenp=1
k > n/p, when p > 1.

We then have there is a constant C so that for all u € WX(Q)
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n, whenp=1
k > n/p, when p > 1.

We then have there is a constant C so that for all u € WX(Q)

l[ulle(@) < Cllullwxg)-
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n, whenp=1
k > n/p, when p > 1.

We then have there is a constant C so that for all u € WX(Q)
l[ulle(@) < Cllullwxg)-

Also, for the equivalence class of u in L>°(2), there is a representative that is a continuous function.

v
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n,whenp=1
k > n/p, when p > 1.

We then have there is a constant C so that for all u € WX(Q)

l[ulle(@) < Cllullwxg)-

Also, for the equivalence class of u in L>°(2), there is a representative that is a continuous function.

v

Significance: Shows that if a function has enough weak derivatives then in fact it can be
viewed as equivalent to a continuous, bounded function.
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Sobolev Inequality

Sobolev Inequality: Consider a domain Q C R” with Lipschitz boundary, k > 0 with k an integer, and
p real number with 1 < p < oo such that

k > n,whenp=1
k > n/p, when p > 1.

We then have there is a constant C so that for all u € WX(Q)

l[ulle(@) < Cllullwxg)-

Also, for the equivalence class of u in L>°(2), there is a representative that is a continuous function.

v

Significance: Shows that if a function has enough weak derivatives then in fact it can be
viewed as equivalent to a continuous, bounded function.
Also, shows that if we have convergence in || - HWPk(Q) then also converges in || - || 1 (q)-
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of
measure zero.
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of

measure zero.

Example: Consider Q = {(x,y)|x? +y? < 1} = {(r,0)|r < 1,0 < 0 < 27}.
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of
measure zero.

Example: Consider Q = {(x,y)[x*> + y? < 1} = {(r,0)|r < 1,0 <0 < 27}

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylulliiq)
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of
measure zero.

Example: Consider Q = {(x,y)[x*> + y? < 1} = {(r,0)|r < 1,0 <0 < 27}

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

lullizom) < 8/*lullisiy 1l g gy
Proof (sketch):
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of
measure zero.

Example: Consider Q = {(x,y)[x*> + y? < 1} = {(r,0)|r < 1,0 <0 < 27}

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

lullizom) < 8/*lullisiy 1l g gy
Proof (sketch):

For u € C1(Q), consider the restriction to 9Q when r < 1
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of
measure zero.

Example: Consider Q = {(x,y)[x*> + y? < 1} = {(r,0)|r < 1,0 <0 < 27}

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

lullizom) < 8/*lullisiy 1l g gy
Proof (sketch):

For u € C1(Q), consider the restriction to 9Q when r < 1

1 1
u(1,0)? = /0 6ar (rPu(r,0)?) dr :/0 2 (rPuu, + ru?)) (r,0)dr
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Trace Theorems (boundary conditions)

When working with LP functions how do we characterize values on the boundary which are sets of
measure zero.

Example: Consider Q = {(x,y)[x*> + y? < 1} = {(r,0)|r < 1,0 <0 < 27}

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

lullizom) < 8/*lullisiy 1l g gy
Proof (sketch):

For u € C1(Q), consider the restriction to 9Q when r < 1

1 1
u(1,0)? = /Oaa(rzu( 9))dr—/0 2 (rPuu, + ru?)) (r,0)dr

— /012 <r2uvu. (X;)/) 2)) (r,0)dr < /012 (r2(ul[Vu] + ru?)) (r.,0)dr
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0R2). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylulliiq)

Proof (sketch):

1

1
u(1,0)* < /0 2 (r?|ul|Vu| + ru?)) (r,0)dr < /0 2 (|u||Vul + u?)) (r,0)rdr.
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0R2). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylulliiq)

Proof (sketch):

1

1
u(1,0)* < /0 2 (r?|ul|Vu| + ru?)) (r,0)dr < /0 2 (|u||Vul + u?)) (r,0)rdr.

Using polar coordinates and integrating out the 6 we obtain

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0R2). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylulliiq)

Proof (sketch):

1

1
u(1,0)* < /0 2 (r?|ul|Vu| + ru?)) (r,0)dr < /0 2 (|u||Vul + u?)) (r,0)rdr.

Using polar coordinates and integrating out the 6 we obtain

/ u?df < 2/ (Jul|Vu| + u?) dxdy.
o9 Q
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0R2). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylulliiq)

Proof (sketch):

1

1
u(1,0)* < /0 2 (r?|ul|Vu| + ru?)) (r,0)dr < /0 2 (|u||Vul + u?)) (r,0)rdr.

Using polar coordinates and integrating out the 6 we obtain

/ u?df < 2/ (Jul|Vu| + u?) dxdy.
o9 Q

The norm of function ulsq restricted to the boundary is
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0R2). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylulliiq)

Proof (sketch):

1

1
u(1,0)* < /0 2 (r?|ul|Vu| + ru?)) (r,0)dr < /0 2 (|u||Vul + u?)) (r,0)rdr.

Using polar coordinates and integrating out the 6 we obtain

/ u?df < 2/ (Jul|Vu| + u?) dxdy.
o9 Q

The norm of function ulsq restricted to the boundary is

2
Jolfomy = [ ado = [ u(t.0pa0.
o 0

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have

1/2
HUH%?(BQ) < 2[|ul| 2 (/Q|VU2dXdy) +2/Qu2dxdy.
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have

1/2
H”H%Z(an) < 2[|ul| 2 (/Q|VU2dXdy) +2/Qu2dxdy.

Using the arithmetic-geometric mean inequality we have
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have

1/2
H”H%Z(an) < 2[|ul| 2 (/Q|VU2dXdy) +2/Qu2dxdy.

Using the arithmetic-geometric mean inequality we have

1/2 1/2 1/2
(/ Vu|2dxdy) + (/ u2dxdy> < (2/ (IVu]* + v?) dxdy> .
Q Q Q
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have

1/2
H”H%Z(an) < 2[|ul| 2 (/Q|VU2dXdy) +2/Qu2dxdy.

Using the arithmetic-geometric mean inequality we have

1/2 1/2 1/2
(/ Vu|2dxdy) + (/ u2dxdy> < (2/ (IVu]* + v?) dxdy> .
Q Q Q

This implies
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have

1/2
H”H%Z(an) < 2[|ul| 2 (/Q|VU2dXdy) +2/Qu2dxdy.

Using the arithmetic-geometric mean inequality we have

1/2 1/2 1/2
(/ Vu|2dxdy) + (/ u2dxdy> < (2/ (IVu]* + v?) dxdy> .
Q Q Q

This implies

1/2 1/2
lull2om) < 8" l1ull o 1l g
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Let Q be the unit disk. For all u € W} (Q) the restriction of u|sq can interpreted as a function in
L2(0Q). Furthermore, it satisfies the bound

1/2 1/2
lullizom) < 8/*llullisigylullizq)

Proof (sketch):
By Cauchy-Swartz we have

1/2
H”H%Z(an) < 2[|ul| 2 (/Q|VU2dXdy) +2/Qu2dxdy.

Using the arithmetic-geometric mean inequality we have

1/2 1/2 1/2
(/ Vu|2dxdy) + (/ u2dxdy> < (2/ (IVu]* + v?) dxdy> .
Q Q Q

This implies
1/2 1 2
lull 200y < 8" 1ull o lulliy;
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Trace Theorems (boundary conditions)

Trace Theorem: Consider Q with a Lipschitz boundary and p real number with 1 < p < co. We then
have there exists a constant C so that

1/P||v||1/F’ vv € WH(Q).

”VHLP(BQ < CHVHLP( wi(Q)’
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Trace Theorems (boundary conditions)

Trace Theorem: Consider Q with a Lipschitz boundary and p real number with 1 < p < co. We then
have there exists a constant C so that

1 1
IVllistom) < ClIVI@y IVIE gy Vv € WAQ).

Trace-Free Sobolev Spaces: We denote by VT/pl(Q) the subset of W} (Q) consisting of the functions
whose trace on the boundary v|sq is zero. In particular,

WH(Q) = {v e WXQ) | v]sn = 0in L2(0Q)}.
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Trace Theorems (boundary conditions)

Trace Theorem: Consider Q with a Lipschitz boundary and p real number with 1 < p < co. We then
have there exists a constant C so that

1/F’||v||1véﬁ’(Q vv € WH(Q).

Trace-Free Sobolev Spaces: We denote by VT/pl(Q) the subset of W} (Q) consisting of the functions
whose trace on the boundary v|sq is zero. In particular,

vlleran) < C||V|\Lp(

WH(Q) = {v e WXQ) | v]sn = 0in L2(0Q)}.

Similarly, W¥(Q2) consists of functions whose derivatives of order k — 1 are in W2(Q), so that
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Trace Theorems (boundary conditions)

Trace Theorem: Consider Q with a Lipschitz boundary and p real number with 1 < p < co. We then
have there exists a constant C so that

1 1
IVllistom) < ClIVI@y IVIE gy Vv € WAQ).

Trace-Free Sobolev Spaces: We denote by VT/pl(Q) the subset of W} (Q) consisting of the functions
whose trace on the boundary v|sq is zero. In particular,

WH(Q) = {v e WXQ) | v]sn = 0in L2(0Q)}.

Similarly, W¥(Q2) consists of functions whose derivatives of order k — 1 are in W2(Q), so that

WEQ) = {ve WAQ) | v(¥|sq = 0in L2(0Q), VY|a| < k}.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Paul J. Atzberger, UC Finite Element Methods



http://atzberger.org/

Paul J. Atzberger, UC Finite Element Methods



http://atzberger.org/

