Exercises

Machine Learning: Foundations and Applications MATH 260J

Paul J. Atzberger http://atzberger.org/

1. Consider a game where we see m coin flips and we need to guess which of two coins A or B generated the data. Consider the case when the coin A has heads probability $p_A = 1/2 + \gamma$ and the coin B has heads probability $p_B = 1/2 - \gamma$. Use $\gamma = 0.1$. Suppose we use the following strategy of selecting the coin $h \in \{A, B\}$: (i) select A if the m flips had more heads, (ii) select B if the m flips had more tails.

At most how many coin tosses m do we need to observe so that our strategy would identify the correct coin 99% of the time?

Hint: Use Hoeffding's Inequality to get a lower bound on m so that $\Pr[|\frac{1}{m}S_m^{(i)} - p_i| \ge t] \le 2\exp(-2t^2m) < \delta = 0.01$, where $i \in \{A, B\}$.

- 2. Consider the concept class of concentric circles of the form $\{(x,y) \mid x^2 + y^2 \leq r^2\}$ for r > 0, $r \in \mathbb{R}$. Show this is (ϵ, δ) -PAC-learnable from a training data set of size $m \geq (1/\epsilon) \log(1/\delta)$.
- 3. VC-Dimension: Determine the VC-Dim(\mathcal{H}) of each of the following hypothesis spaces:
 - (a) Classifiers using polynomials of degree n, $\mathcal{H} = \{h \mid h(x) = \text{sign}(p(x)), p \in \mathbb{P}^n\}$.
 - (b) For a finite set \mathcal{X} and number $k \leq |\mathcal{X}|$, let $\mathcal{H}_k = \{h \in \{0,1\}^{\mathcal{X}} \mid |\{x \mid h(x) = 1\}| = k\}$ (i.e. all functions that can assign only exactly k points in \mathcal{X} the label 1).
 - (c) For a finite set \mathcal{X} and number $k \leq |\mathcal{X}|$, let $\mathcal{H}_{\leq k} = \{h \in \{0,1\}^{\mathcal{X}} \mid |\{x \mid h(x) = 1\}| \leq k\}$ (i.e. all functions that can assign at most k points in \mathcal{X} the label 1).
- 4. Consider a random variable X that is non-negative satisfying the inequality $\Pr[X > t] \le c \exp(-2mt^2)$ for all t > 0. Show that $E[X^2] \le \log(ce)/2m$.

Hints: Do this by using that $E[X^2] = \int_0^\infty \Pr[X^2 > t] dt = \int_0^u \Pr[X^2 > t] dt + \int_u^\infty \Pr[X^2 > t] dt$ for any choice of u > 0. For the first term, use that probabilities are always bounded by one. Optimize the obtained bound over u.

5. Consider a family of functions $f^{(m)}: \mathcal{X}^m \to \mathbb{R}$ on a sample space \mathcal{X} and a sequence c_i with $\sum_{i=1}^{\infty} c_i^2 < \infty$. Suppose that $f^{(m)}$ has bounded dependence on parameters in the sense

$$|f^{(m)}(x_1,\ldots,x_i,\ldots,x_m) - f^{(m)}(x_1,\ldots,x_i^*,\ldots,x_m)| \le c_i.$$
 (1)

For short-hand we denote $f(s) = f^{(m)}(x_1, \dots, x_i, \dots, x_m)$.

Consider the case when $f^{(m)} = (1/m) \sum_{k=1}^{m} X_k$ for i.i.d random variables $X_i \in \mathcal{X}$ with $|X_i| \leq C$. Show this has bounded dependence.

How many samples m do we need so that the values f(S) and its mean value E[f(S)] are within the distance 0.1 and this occurs 99% of the time?

1

In other words, establish the following bound and find for what m we have

$$\Pr[|f(S) - E[f(S)]| \ge \epsilon] \le 2 \exp\left(-2\epsilon^2 / \sum_{i=1}^m c_i^2\right) < \delta, \tag{2}$$

where $\delta = 0.01$ and $\epsilon = 0.1$. Hint: Use McDiarmids Inequality with $c_i = C/i$.