
Sparse L1-Autoencoders for Scientific Data Compression

Matthias Chung1 , Rick Archibald2 , Paul Atzberger3 , Jack
Michael Solomon1

1Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA, USA
2Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37830, USA
3 Department of Mathematics, University of California Santa Barbara, Santa Barbara, CA
93106, USA

E-mail: matthias.chung@emory.edu

Abstract. Scientific datasets present unique challenges for machine learning-driven
compression methods, including more stringent requirements on accuracy and mitigation
of potential invalidating artifacts. Drawing on results from compressed sensing and
rate-distortion theory, we introduce effective data compression methods by developing
autoencoders using high dimensional latent spaces that are L1-regularized to obtain sparse
low dimensional representations. We show how these information-rich latent spaces can be
used to mitigate blurring and other artifacts to obtain highly effective data compression
methods for scientific data. We demonstrate our methods for short angle scattering (SAS)
datasets showing they can achieve compression ratios around two orders of magnitude
and in some cases better. Our compression methods show promise for use in addressing
current bottlenecks in transmission, storage, and analysis in high-performance distributed
computing environments. This is central to processing the large volume of scientific data, for
instance for SAS data being generated at shared experimental facilities around the world
to support scientific investigations. Our approaches provide general ways for obtaining
specialized compression methods for targeted scientific datasets and is not limited to specific
applications.

Keywords: autoencoders, compression, sparsity

Submitted to: Machine Learning: Science and Technology

1. Introduction & Background

Autoencoders are prominent and highly successful architectures for neural networks for
extracting information from data sets [4, 23, 29]. They discover inherent structures within data
by learning a parameterized encoder e and decoder d such that x ≈ d(e(x))). Autoencoders

https://orcid.org/0000-0001-7822-4539
https://orcid.org/0000-0002-4538-9780
https://orcid.org/0000-0001-6806-8069
https://orcid.org/ 0009-0001-0822-9438

also have strong connections to well-established mathematical concepts [2, 48] and are versatile
when utilized as generative models [28]. Autoencoders have wide applicability in unsupervised
learning environments ranging from denoising [59], anomaly detection [53], image and audio
compression [31, 56], to general recommender systems [63].

Most commonly, autoencoders employ low dimensional latent spaces to serve as natural
data-driven machine learning techniques for model reduction and data compression [12, 36].
Autoencoders’ nonlinear characteristics make them a valuable complement to established
techniques like principal component analysis and singular value decomposition [60], Fourier
analysis [33], reduced order models [62], and dictionary learning approaches [55].

Mathematically, an autoencoder is a nonlinear parameterized mapping a : X → X with
a functional composition a = d◦ e, into encoder e : X ×Θe → Z and decoder d : Z×Θd → X
with trainable parameters θe ∈ Θe ⊂ Rne and θd ∈ Θd ⊂ Rnd . The feature space Z ⊂ Rℓ is
referred to as latent space while X ⊂ Rn is the data space.

While terminology varies, autoencoders are classified based on their model configuration.
Standard autoencoders with small dimensional latent spaces ℓ < n are referred to as
undercomplete and are widely utilized, while autoencoders with large dimensional latent
spaces ℓ > n are referred to as overcomplete and are less common. A shallow autoencoder
is characterized by having only one, while a deep autoencoder has more than one hidden
layer. Autoencoders typically maintain network symmetry, i.e., the structure of e and d

are mirrored such that the decoder transformations mimic the encoder in reverse order. Its
general structure makes autoencoders flexible, for instance, giving up the mapping back into
the input space has led to encoder-decoder networks which are widely used as likelihood-free
surrogate models for physical forward propagation [64] and even inverse modeling [1, 15].

Despite its versatility, various drawbacks associated with autoencoders have been
identified. For instance, the undercomplete “hour-glass” autoencoder shape compresses
input signals x ∈ X into the low-dimensional latent space z = e(x; θe) ∈ Z and may lead
to corrupted reconstructions, e.g., blurring artifacts in the reconstructed images [42]. This
drawback has been highlighted in the generative process of autoencoders, i.e., variational
autoencoders. Autoencoders with a large number of trainable network parameters, such as
overcomplete autoencoder, tend to overfit, resulting in “identity mappings” countering one
of the main purposes of autoencoders: removing unwanted artifacts from the input x [27].
A further drawback includes incorporating scientific and physical features into the network
remains a major hurdle, where some initial research is making strides towards this goal [3,
11, 34].

To mitigate the challenges outlined above, we break with one common assumption of
autoencoders, that is, we consider utilizing an overcomplete autoencoder framework with
sparsity promoting mappings of the latent variable, illustrated in Figure 1. Overcomplete
autoencoders are prone to severely overfit without taking mitigating measures. Hence,
imposing sparsity onto the latent space variable is a regularizing measure and various

2

strategies have been proposed. Despite being tremendously successful, we recognize that
overcomplete autoencoders with sparsity-promoting features in the latent space are severely
underutilized.

Sparse autoencoders have first been introduced in the 2010s with pioneering work
from various research groups including [26, 39, 40, 45]. Here, various strategies have been
entertained to promote sparsity of the latent variable. For instance, by selecting a fixed
amount of k nonzero elements of the latent variable z with maximal reconstruction features
[40]. Another approach limits the number of active latent components by utilizing a binary
Bernoulli random variable model realized through a Kullback-Leibner divergence penalty
[45]. A third approach, which we will follow here, is to use the compressed sensing framework
via L1-regularization [26]. Recent years have brought advances, various extensions of sparse
autoencoders have been developed, and scientific applications considered [5, 27, 35, 38, 41, 46,
54], however, despite its successes sparse autoencoder have yet to find its way into mainstream
applications. We like to point out that the term sparse autoencoders may not refer to sparsity
induced onto the the latent variable, but sparsity imposed on the network parameters θ, e.g.,
see [38, 54].

While research areas such as dictionary learning, manifold learning, and applications
like speech recognition have been explored [5, 27, 35, 38, 41, 46, 54], to the best of our
knowledge, the core application of sparse autoencoders for compressive representation has not
yet been fully addressed. Hence our proposed method utilizes sparse latent space signals to
efficiently store input signals. Furthermore, in contrast to prior work on sparse autoencoders,
we not only consider sparsity on the latent variable z via L1-regularization, but also promote
sparsity on a transformed signal f(z), incorporated through regularization during training.
The functional f provides the possibility to promote structure within the latent variable
z, e.g., through a total variation type (generalized lasso). Note that sparse autoencoders,
Figure 1, share limitations of the general class of autoencoder, that is, the ability to effectively
generalize to novel data instances, particularly when the training dataset does not accurately
reflect the characteristics of the testing dataset.

Our work is structured as follows, in Section 2 we introduce our proposed sparsity
promoting autoencoder for data compression tasks, discuss its numerical applications in
Section 3, and provide concluding remarks and discuss future work in Section 4.

2. Sparse Autoencoders for Scientific Data Compression

Machine learning-based compression algorithms encounter distinct challenges when applied
to scientific datasets. These datasets frequently necessitate stringent criteria for individual
sample reconstruction accuracy, minimization of artifacts such as blurring, and preservation of
critical data properties. To help address these challenges, we use large dimensional information-
rich latent spaces and sparsity regularizations. This allows for developing representations

3

amenable to further reductions and compression. Historically, embedding sparse signals into
large dimensional vector spaces has had a major impact on signal processing starting in the
1990s with the compressed sensing framework [7, 8, 19, 57]. Here, we develop a strategy for
autoencoders leveraging latent space dimensions larger than the feature space of the data,
e.g., ℓ > n while imposing sparsity on features of the latent variable z generating a well-posed
compression problem. Let θe and θd be the trainable network parameter of the encoder and
decoder, respectively, ideally, we may formulate the network training as

min
(θe,θd)∈Θe×Θd

E ∥f(e(x; θe))∥0 subject to ∥d(e(x; θe); θd)− x∥2 ≤ δ, (1)

where E denotes the expectation over the data x, ∥ · ∥2 the L2-norm, ∥f(e(x; θe))∥0 is defined as
the cardinality of nonzero elements in f(e(x; θe)), and δ > 0 represents a desired reconstruction
quality. We let f : Z → F be a predefined operator we refer to as the sparse or geometric
structure selector. Solving (1) is NP-hard and approximations need to be developed to obtain
efficient methods, [21].

2.1. Lossy Compression with L1-Regularizations and L2-Reconstructions

Under the restricted isometry properties [8], we may reformulate using an L1 convex relaxation
of (1) which leads to the generalized lasso problem

min
(θe,θd)∈Θe×Θd

E ∥d(e(x; θe); θd)− x∥22 + λ ∥f(e(x; θe))∥1 . (2)

Comparable sparsity can be achieved with a suitable choice of λ > 0, see [7, 14] for details.
This can be viewed as a rate-distortion objective, where λ ∥ · ∥1 serves as a measure of the
compression rate and ∥ · ∥2 for the reconstruction distortion [17].

In our framework we propose to utilize an operator f with the benefits that allow
for going beyond the standard approach to sparsity based on the latent variable z with

x
encoder

e
z

decoder
d

x

Figure 1. Overcomplete autoencoder architecture, where the latent space dimension ℓ is
bigger than the input dimension n. Given the ill-posed nature of neural network training,
overcomplete autoencoders require additional regularization, such as sparsity-promoting
L1-regularization. In our case, this regularization is applied to a function f of the latent
variable z.

4

a L1-regularization e.g., ∥e(x; θe)∥1. The standard lasso approach restricts sparsity to be
enforced only on each component of z individually, hence the latent variable carries only
minimal interpretability or structure [41]. However, when using a mapping f we may enforce
further structure to the latent space variable z. The function f effectively provides alternative
features for the latent variable z providing further representations on which we can impose the
sparsity conditions. This can be used to remedy disadvantages of purely L1-regularizations
[52] and allows in some cases for representations with additional geometric interpretability
[47]. For simplicity, we use here a total variation regularization approach f(·) = ∇(·), where
∇ is the gradient operation. In practice, for finite dimensional spaces Z, we approximate
this operation by the finite difference operator (f(z))i = (zi+1 − zi)/h, e.g., with h = 1. This
is also used to help in clustering of information in the latent space [47].

As a consequence of our autoencoder having a larger dimensional latent space and
associated parameter space, our approaches have capacities enabling for discovering collective
features allowing for going beyond just encoding and decoding training image individually
within the network. Our numerical results in Section 3 clearly show that our approach
generalizes well to testing data. Sparse autoencoders reduce overall storage by leveraging an
overcomplete latent space in which only a small subset of components are active, yielding
compact and efficient representations of the input data. During training, this sparsity
is promoted through L1 regularization applied to f(z), a function of the latent variable,
encouraging concise encodings that retain the essential structure of the signal. In our
methods, the regularization parameter λ balances potential over- and underfitting. Small
λ values may generate autoencoder with identity mappings for training data but may not
generate any sparsity within the sparse structure selector. On the other hand large λ may
produce significant sparsity while missing to reconstruct the input signal x. Cross-validation
techniques are readily available for calibrating the hyperparameter λ, however they are
computationally expensive, requiring the training of NK autoencoders when performing
K-fold validation over N candidate values—highlighting the need for more efficient calibration
strategies and warranting future investigations.

2.2. Sparsity Promoting Linear Autoencoder

To illustrate the advantages of sparsity-promoting autoencoders, we first consider a linear
autoencoder A ∈ Rn×n. Assuming we have a ℓ dimensional latent space we may compute a
generic optimal autoencoder by minimizing the Bayes risk, i.e.,

min
rank(A)≤ℓ

E ∥(A− I)x∥22 , (3)

where I denotes the identity mapping. Assuming the random variable x has symmetric
positive definite second moment E xx⊤ = Γ with Cholesky decomposition Γ = BB⊤, then

E ∥(A− I)x∥22 = tr
(
(A− I)Γ(A⊤ − I)

)
= ∥AB −B∥2F (4)

5

and Equation (3) is equivalent to

min
rank(A)≤ℓ

∥AB −B∥2F , (5)

where ∥ · ∥F deontes the Frobenius norm.
Without any rank constraints ℓ = n we can immediately follow that A = I is

a solution. However, for rank constraint problems, we require a generalization of the
Eckart–Young–Mirsky theorem. Which we here state as follows.

Theorem 2.1 ([13, 22]). Let matrices B ∈ Rm×n and L ∈ Rq×n with k = rank (L) be given.
Further, let L = UΣV ⊤ denote the SVD and UkΣkV

⊤
k the rank k truncated skinny SVD of L.

Then
Â = [BVkV

⊤
k]ℓL

†

is a solution to the minimization problem

min
rank(A)≤ℓ

∥AL−B∥2F ,

having a minimal ∥A∥F. This solution is unique if and only if either

ℓ ≥ rank
(
BVkV

⊤
k

)
or 1 ≤ ℓ < rank

(
BVkV

⊤
k

)
and σℓ(BV ⊤

k) > σℓ+1(BV ⊤
k).

The [·]ℓ refers to the rank ℓ approximation of a matrix. Let U = [u1, . . . , uℓ, uℓ+1, . . . , un]

be the left singular vectors, V = [v1, . . . , vℓ, vℓ+1, . . . , vn] be the right singular vectors, and

Σ =

[
Σℓ 0

0 Σ̃ℓ

]
, be the diagonal matrix with sorted singular values σj ≥ σj+1 and singular

vectors, i.e., U =
[
Uℓ Ũℓ

]
.

Proof. See [13, 22]

Using Theorem 2.1 for Equation (5) we obtain the following result.

Theorem 2.2. Let matrix B ∈ Rn×n have full row rank with SVD given by B = UΣV ⊤.
Then

Â = UℓU
⊤
ℓ

is a solution to the minimization problem

min
rank(A)≤ℓ

∥AB −B∥2F ,

having a minimal Frobenius norm
∥∥∥Â∥∥∥

F
=

√
ℓ and

∥∥∥ÂB −B
∥∥∥2

F
=

∑n
k=ℓ+1 σk(B). This

solution is unique if and only if either ℓ = n or 1 ≤ ℓ < n and σℓ(B) > σℓ+1(B).

6

Following this result, the obvious choice for the autoencoder Â = D̂Ê, with encoder and
decoder being Ê = U⊤

ℓ and D̂ = Uℓ, respectively. Note that this decomposition is not unique,
e.g., let K be any n× n invertible matrix then Ê = U⊤

ℓ K and D̂ = K−1Uℓ, are valid choices.

Proof. Using Theorem 2.1, the solution to

min
rank(A)≤ℓ

∥AB −B∥2F

is given by

Â = [BV V ⊤]ℓB
−1 = [UΣV ⊤]ℓB

−1 = UℓΣℓ

[
I

0

]
Σ−1U⊤ = UℓΣℓ

[
I

0

]
Σ−1U⊤ = UℓU

⊤
ℓ ,

where Uℓ contains the first ℓ columns of orthogonal matrix U . Note that∥∥UℓU
⊤
ℓ UΣV ⊤ − UΣV ⊤∥∥2

F
=

∥∥U⊤UℓU
⊤
ℓ UΣ− U⊤UΣ

∥∥2

F
(6)

=
∥∥U⊤UℓU

⊤
ℓ UΣ− Σ

∥∥2

F
. (7)

Hence, with its definition U =
[
Uℓ Ũℓ

]
we have

U⊤Uℓ =

[
U⊤
ℓ

Ũ⊤
ℓ

]
Uℓ =

[
U⊤
ℓ Uℓ

Ũ⊤
ℓ Uℓ

]
=

[
Iℓ
0

]
and U⊤UℓU

⊤
ℓ U =

[
Iℓ
0

] [
Iℓ 0

]
=

[
Iℓ 0

0 0

]
.

Resulting in

∥∥∥ÂB −B
∥∥∥2

F
=

∥∥U⊤UℓU
⊤
ℓ UΣ− Σ

∥∥2

F
=

∥∥∥∥∥
[
Σℓ 0

0 0

]
− Σ

∥∥∥∥∥
2

F

=

∥∥∥∥∥
[
0 0

0 Σ̃ℓ

]∥∥∥∥∥
2

F

=
n∑

k=ℓ+1

(σk(B))2.

(8)

The theorem above provides us with a squared error bound els =
∑n

k=ℓ+1(σk(B))2 we
can expect a linear autoencoder may achieve. Let us now consider the problem of finding an
optimal linear autoencoder A with the decomposition A = DE into encoder E ∈ Rℓ×n and
D ∈ Rn×ℓ where ℓ > n by minimizing L1-regularized optimization problem

min
D∈Rn×ℓ,E∈Rℓ×n

E ∥(DE − I)x∥22 + λ ∥Ex∥1 (9)

with λ > 0. For simplicity of illustration, we chose f = I. Note under the assumptions
stated above, given an encoder Ẽ, a corresponding optimal decoder D̃, can be computed
using Theorem 2.2 resulting in D̃ = (ẼBB⊤Ẽ⊤)†BẼB, where † denotes the Moore-Penrose
pseudoinverse. Can we achieve a squared error bound of similar magnitude as els using

7

while promoting sparsity in Ex? Recall, for any ℓ > n we may always find encoder and
decoders E and D such that E ∥(DE − I)x∥2 = 0. To investigate sparsity, let us consider the

decompositions D =
[
D1 D2

]
and E =

[
E1

E2

]
with D1, E1 ∈ Rn×n then D2 ∈ Rn×(ℓ−n), and

E2 ∈ R(ℓ−n)×n. We further assume that D1E1 = I and D2E2 = 0. For arbitrary invertible
K ∈ Rn×n we let D1 = αK−1 and E1 =

1
α
K, α > 0 and the condition E ∥(DE − I)x∥2 = 0

is trivially fulfilled and the optimization reads

min
D2∈Rn×r,E2∈Rℓ−n×n

E ∥D2E2x∥22 + λ

∥∥∥∥∥
[

1
α
K

E2

]
x

∥∥∥∥∥
1

= E ∥D2E2x∥22 +
λ
α
∥Kx∥1 + λ ∥E2x∥1 .

Hence for any ϵ > 0 there exists an α > 0 such that λ
α
∥Kx∥1 < ϵ which is achieved by

the numerical sparsity vector (1/αK)x. As for the remaining ℓ− n elements we may gain
additional sparsity with the selection of E2 and D2 with E ∥D2E2x∥2 ≈ els. Consequently,
the generalized lasso approach may generate sparse vectors Ex while maintaining the same
expected squared error as an undercomplete linear autoencoder in Equation (3).

2.3. Neural network Training

Given a representative set of (unsupervised) training samples {xj}Jj=1 we minimize the
empirical generalized lasso

min
θe,θd∈Θ

1
J

J∑
j=1

∥d(e(xj; θe); θd)− xj∥22 + λ ∥f(e(xj; θe))∥1 , (10)

Our developed methods leverage results in compressed sensing showing promise for having
a significant impact on scientific compression techniques. Under mild assumptions,
compressed sensing has shown high compression rates, far below theoretical Nyquist
rates [9, 10]. Benefiting from its advantages in a trainable deep neural networks
provides significant compression rates while maintaining high accuracy of the signal itself
in Section 3. Theoretically our methods have also connections to dictionary learning
frameworks. Sparse dictionary learning provides good reconstruction of a sparse selection of
dictionary atoms [20, 30, 44, 58]. Here, since linear, zeros in its dictionary representation
does not carry any information. However, utilizing sparsifying autoencoders allows for
nonlinear transformations and therefore enriches information carried by the latent variable.
Consequently, even “zero” elements in the latent variable z carry information of the underlying
signal. The autoencoder architecture for our numerical examples is given in Figure 2.
The network is a fully connected five layer symmetric neural network with hidden layer
size (m, ℓ,m), ReLU activation function between each layer, and input/output size n.
Furthermore, the generic design of the neural network architecture provides an additional
level of flexibility toward efficient encoding and decoding of the underlying signals x.

8

Figure 2. The autoencoder architecture for our
numerical examples.

Compressed sensing has shown high
compression rates. Leveraging and
combining these methods based on
a trainable and sparsity promoting
deep neural network provides ap-
proaches for significant compression
rates while maintaining a high level
of accuracy of the signal. We note
that ratio of encoder parameters
size to image size is given as re =
ℓ∗m+m∗n+m+n

n
= 1+ m

n
∗ (ℓ+ n+ 1).

This ratio exceeds one for any de-
coder architecture, indicating that
the size of the decoder will always
be larger than the image size. When
employing autoencoders for com-
pression, it is generally assumed
that the one-time cost of transmit-
ting the decoder to the receiver will
be amortized over multiple image
transfers, making it negligible in
this context. To illustrate the differ-
ence in the number of images that
need to be transferred to amortize
the fixed cost of decoder transfer, we will compare the various decoders used in this study.
Here, assuming an image size of n = 64 × 64, the smallest autoencoder analyzed in this
study, which is emblematic of traditional autoencoders, has a ratio re = 1153.25. In contrast,
the largest autoencoder, which features latent spaces larger than the image size, has a ratio
re = 4610. This demonstrates that the difference in amortizing the sizes of the smallest and
largest autoencoders is not significantly radical..

2.4. Lossless Arithmetic Compression Methods

To further compress our representations z, we develop methods by combining our
approaches with lossy quantization and lossless entropy encoding [17, 24]. We represent
the information in z as a list of the M indices of nonzero entries i1, . . . , iM and
the weights at these locations wk = zik . The indices are sorted from smallest to
largest. We represent this by storing the distances between successive indices δk =

ik+1 − ik along with a termination symbol ι to obtain the sequence δ1, . . . , δM−1, ι.

9

Figure 3. Arithmetic Coding is used
to obtain an entropy encoder using our
given model probability distribution
for symbols. This is accomplished by
encoding a description of the sequence
of symbols in terms of successively
divided intervals that have sizes at
each stage proportional to our given
model probability distribution.

We expect in practice for most datasets that
the probability distribution ρ(δi) over the
differences δi will tend to skew toward the
smaller values, such as having δi < ℓ/2 for
most entries. By modeling this distribution
we can obtain gains in the compression using
an entropy encoder. In entropy encoding,
from results in information theory [17] the
optimal encoder would compress the data
by assign to data δ a code-word of length
ideally ℓ(δ) = − log(p(δ)). This would
give the optimal average code-word length
ℓ̄ = E[ℓ(δ)] =

∑
δ −p(δ) log(p(δ)) which is

the entropy of the distribution p(δ), hence
the name entropy encoding. In practice, since
the − log(p(δ)) will seldom be an integer we can only obtain an encoding approximating this
optimal average code-word length [17]. To obtain a lossless entropy encoding for our model
probability distribution ρ̃(δ), we develop a lossless Arithmetic Coding compression method
A to obtain c = A(δ; ρ̃(·)), [32, 51, 61], see Figure 3.

In Arithmetic Coding, data is represented as the leading binary digits of a real-number
that is represented by a binary sequence that specifies the number’s location on the real-line by
successive interval partitions that are proportional to the probability of a symbol’s occurrences.
The compression exploits the contrast with standard binary real-number encoding which uses
equal-sized partitions to successively halve the interval giving similar encoding lengths for
numbers within each interval. We show an illustration of the non-uniformity of the partitions
that can arise, and even vary depending on the particular entry location within the sequence,
see Figure 3. Arithmetic Coding can achieve near optimal encoding with average code-word
lengths approaching the sequence entropy. For reconstructions of the data during decoding,
the same relative probabilities of symbols are used as during encoding. The partitions which
are generated by these probabilities are used to localize the real-number whose leading binary
digits gives the uncompressed data [32, 51, 61].

Our model for ρ̃(δ) for the probabilities is obtained by fitting a shifted Gaussian-
like form ρ̃(δ) = q(δ)/Z, where Z =

∑
δ q(δ). The q(δ) are weights that combine

a normally distributed density and uniform distribution of the form P (x;µ, σ2, c0) =

(2πσ2)−1/2 exp(−(x− µ)2/2σ2) + c0 with µ = 0, σ2 = (ℓ/3)2, and c0 = 10−2. To compress the
weights {wk} we use lossy quantization of the latent weights w̃ = Q(w), such as using 16-bit
floating-points, [24, 43, 49]. This provides for z the compressed representation (c, w̃). We use
these methods to provide further compression of our data in addition to the sparsity.

10

Figure 4. We show a representative testing input xj for the SAS application in the
first column, while its reconstructions using a traditional windowed DCT on the top,
sparse autoencoder networks (1, 2, 1/2, z) in the middle and (1, 2, 5,∇z) on the bottom are
presented in the second column. The average pixel reconstruction error ∥d(e(xj ;θe);θd)−xj∥2/n

are 7.04× 10−4, 3.43× 10−3 and 8.15× 10−4, respectively, where n is the number of pixels.
We show the latent space variable zj = e(xj ; θe) in the third column. The latent variable
zj each contains 264, 34 and 26 non-zero elements. With an original image size of 64× 64

the resulting compression ratio ∥xj∥0 to ∥e(xj ; θe)∥0 and ∥xj∥0 to ∥∇e(xj ; θe)∥0 are 15 : 1,
120 : 1 and 157 : 1.

3. Numerical Investigations

We illustrate the significant advantages our novel approach carries on simulated small angle
scattering (SAS) data, a technique that is ubiquitous across the world’s X-ray light and
neutron facilities. The central objective of small-angle scattering (SAS) experiments is to
non-invasively probe the nanoscale structure of materials by capturing information about their
size, shape, internal arrangement, and overall morphology. This makes SAS a powerful tool
for characterizing material properties across a wide range of scientific disciplines. We utilize
the tool SASView [50], a community-based tool used at experimental facilities to analyze and
simulate SAS experiments. By using SASView we are able to accurately approximate the
broad range of experimental data that can be produced by different instruments and different
facilities, for different conditions and material samples. This also give us the opportunity

11

to validate our methods for newly generated data. For all SAS experiments simulated, we
set the number of sensors to be uniformly spaced with n = 64× 64. Measurement sensors
for SAS experiments are some form of charge-coupled device (CCD), so uniform spacing is
common. Given limited range of material properties (molecular arrangement, size, shape,
and structure), a low-dimensional manifold may effectively represent this data, facilitating
the possibility of high data compression rates.

All networks in this section use the same autoencoder architecture depicted in Figure 2 and
this architecture follows that depicted in Figure 1. For a given input of size n and loss defined
in Equation (10), we adopt the notation

(
m
n
, ℓ
n
, λ, f(z)

)
to uniquely define all networks used

in this paper (e.g., n, input and target dimension, m intermediate network layer dimension, ℓ
latent dimension, λ sparsity regularization parameter, and the geometric structure selector
f). We further report that all networks were trained using RAdam optimization, introduced
in 2019 [37] and implemented by Pytorch [18], with learning rate of 1× 10−4 a batch size of
512 and 50 epochs used for the statistics of Table 1. We note that training and performance
of all networks in this study displayed sensitivity to optimization method, batch size, learning
rate, and number of epochs – a common issue for nonlinear stochastic optimization problems
such as those that occur in machine learning. We keep all these network architecture choices
fixed throughout, with the slight modification of additional epochs for the main example,
in order to show the general characteristics of sparse optimization in the latent space of
autoencoder. All computations were performed on Oak Ridge National Laboratory’s (ORNL)
Compute and Data Environment for Science (CADES) cluster [16]. In the initial phases of
our investigation, we used convolution-type architectures which generally use convolution
operators at the beginning and end of the network. We observed that the filtering aspect of
the convolutional neural network dominated and hindered all information from reaching the
latent space layer that connects the encoder and decoder.

We demonstrate the advantages of our proposed method for realistic configurations
of SASView [25]. We are able to highly compress all simulations from this package. We
begin by randomly generating 50,000 images using the aforementioned sensor configuration
of n = 64× 64, which is characteristic of the range of SAS experimental data collected at
scattering facilities. The representative result of this investigation is presented in Figure 4,
which demonstrates high compression rates with high accuracy for the networks (1, 2, 1/2, z)

and (1, 2, 5,∇z). For comparison, we also present the results of using a windowed Discrete
Cosine Transform (DCT) [6], a common technique used in many image and video compression
methods. We use a standard window size of eight pixels.

We demonstrate that we have captured all realistic configurations of SASView [25], using
our train networks in Figure 5. Here we sample again a much denser set of measurements
using 150,000 images for testing. The takeaway from this analysis is that we can maintain the
same level of compression and accuracy for both testing and training data. Additionally, it is
demonstrated for the same number of network parameters, the sparsity promoting function

12

Figure 5. We show the error and compression rate probability densities for the sparse
autoencoder networks (1, 2, 1/2, z) and (1, 2, 5,∇z). The top left plot displays the distributions
of the testing error, which consists of 150,000 independently random SAS images generated
by SASView post-training. The bottom left plot displays the distributions in the errror
in the 50,000 random SAS images generated by SASView for training. The mean training
errors of both approaches are 2.48× 10−3 and 8.00× 10−4, respectively. Correspondingly,
the mean training compression rates are 153× and 216×. Note that these values only alter
insignificantly for the testing set.

f(z) = ∇z significantly improved compression rates and accuracy. Again this is visually
represented in Figure 4 where this increased accuracy is able to maintain a more complex
scattering pattern that can occur in SAS experiments.

Figure 6 presents an ablation study that quantifies the sensitivity of the latent space in
sparse autoencoder networks, specifically (1, 2, 1/2, z) and (1, 2, 5,∇z). The figure illustrates
the difference in the ratio when a latent space term is zeroed compared to its normal state.
Most latent space variables exhibit low sensitivity; however, there is a small subset of variables
that show high variability, which aligns with the sparsity patterns observed in both the
training and testing datasets.

Our methods can also be combined with further lossy and lossless methods to obtain

13

Figure 6. Ablation study in the latent space for sparse autoencoder networks
(1, 2, 1/2, z) and (1, 2, 5,∇z), on the left and right respectively. Here we report the ratio
∥d(e(x;θe)i7→0;θd)−x∥2/∥d(e(x;θe);θd)−x∥2 where e(x; θe)i7→0 represents replacing the ith element in
the latent space with zero.

further compression. As discussed above, we represent the information in z as a list of
differences in the M indices of non-zero entries to obtain the sequence δ1, . . . , δM−1, ι and
the weights wk at these indices to obtain z → (δ, w). Here, we use arithmetic coding A
to develop for δ lossless compression methods c = A(δ; ρ(·)) [32, 51, 61]. We also further
could quantize Q for lossy compression of w as w̃ = Q(w), such as using lower-precision
floating-points [24, 43]. We currently use the full precision floating-point representations
of the data. For δ, we leverage that the probability distribution ρ(δ) will tend to skew to
the left, for the SAS data see Figure 7. As an initial model for this distribution, we use a
Gaussian-like form ρ(δ) = q(δ)/Z, where Z =

∑
δ q(δ) where q(δ) is normally distributed

with density P (δ; 0, σ2) where P (x;µ, σ2) = (2πσ2)−1/2 exp(−(x− µ)2/2σ2). To help ensure
efficient encoding on future samples, we used parameters having good coverage with σ2 = 103

and c0 = 10−3. We found the lossless compression methods provide on average a compressed
representation 79% of the uncompressed δ. Combining this with lossy quantization of the
weights from 64-bit floating-points to 16-bit floating-points [24, 43, 49], yields an overall
compressed representation (c, w̃) that is 52% of the uncompressed case. These methods
provide an additional factor of around 2× to the already favorable compression ratios achieved
by the sparsity.

In order to compare and demonstrate the potential of high dimensional sparse auto-
encoding, we present the results of Table 1 which compares a fully connected encoder-decoder
with the typical hourglass framework without the sparsity promoting L1-norm in (10), to
encoder-decoder with sparsity promoting loss functions. This table also compares the effect
of increasing the dimension of the latent space, where the statistics are obtained by running
twenty random initial conditions for each tested network architecture in the table using the
same testing and training data described at the beginning of this section. The first entry in

14

Figure 7. For further compression of z with our arithmetic entropy encoding, we show the
distribution of index differences ρ(δk) for our representation z → (δ, w) (left). For the SAS
scattering data, we show the further compression reductions in percentage obtained for the
index differences δ (right).

the table displays the mean and standard deviation for the relative L2-norm and compression
rate for typical hourglass framework with architecture (1/4, 1/8, 0, ·). It can be seen that for
this type of network, the mean testing relative error is 3.6% with compression rate 10×. Note,
we report average pixel error in Figure 4 and report here that the corresponding relative
errors for the first example is 6.81% and 3.39% respectively. The errors are comparable to
the relative errors reported in Table 1. Every other row in this table represents a different
sparse autoencoder architecture, and the λ parameter has been chosen to best approximate
the error of first entry.

We can make some general observations from Table 1. First, as seen from the first three
rows, that even when the network architecture and training is held constant, adding in a
sparsity term into the loss function can provide additional compression without the loss of
accuracy. Two, enlarging the latent space provides significant improvement to compression
when sparse loss functions is used in the loss function. Finally, the type of sparse structure
selector f used in the loss function makes a difference in the accuracy and compression.
Additionally, we report that for all autoencoders trained the weights were randomly chosen by
adding normal distributed random noise to each weight before training, and the distribution
of the relative error after one epoch was 8.2 ± 1.5 × 10−1 for all models in Table 1. The
network operates consistently under different random initial conditions.

We investigate the impact of resolution on compression and introduce a new structural
loss function for latent space, the Laplacian operator. The results are presented in Figures 8
and 9. We utilize two sparse autoencoder networks: (1, 2, 1/2, z) and (1, 2, 6,∇2z). Comparing
these figures, we observe that employing the Laplacian operator to structure the latent space
enhances compression at higher resolutions and effectively clusters non-zero elements in the
latent space. In contrast, at lower resolutions, the clustering constraint in the latent space is

15

Architecture Realitive L2 Compression Rate(
m
n
, ℓ
n
, λ, f(z)

)
Test Train Test Train

(1/4, 1/8, 0, ·) 3.6(4)×10−2 3.5(4)×10−2 1.0(1)×101 1.0(1)×101

(1/4, 1/8, 1× 10−3, z) 3.5(4)×10−2 3.4(4)×10−2 1.2(1)×101 1.2(1)×101

(1/4, 1/8, 2× 10−3,∇z) 3.6(4)×10−2 3.6(4)×10−2 1.2(2)×101 1.2(2)×101

(1/2, 1/4, 7× 10−3, z) 2.9(6)×10−2 2.8(6)×10−2 2.2(4)×101 2.2(4)×101

(1/2, 1/4, 3× 10−2,∇z) 2.8(7)×10−2 2.7(6)×10−2 2.2(5)×101 2.1(5)×101

(3/4, 1/2, 3× 10−2, z) 3.0(6)×10−2 2.9(6)×10−2 4.4(9)×101 4.5(8)×101

(3/4, 1/2, 1.5× 10−1,∇z) 3.1(6)×10−2 3.1(6)×10−2 5.2(9)×101 5.1(9)×101

(1, 1, 1× 10−1, z) 3.2(7)×10−2 3.3(7)×10−2 7.8(9)×101 7.8(9)×101

(1, 1, 9× 10−1,∇z) 3.6(7)×10−2 3.6(7)×10−2 1.0(1)×102 1.0(1)×102

Table 1. This table displays the mean and standard deviation for the relative L2 norm,
∥d(e(xj ;θe);θd)−xj∥2/∥xj∥2, and compression rate, n/∥f(e(xj ;θe))∥0, for different autoencoder
architectures. The statistical notation, for example 1.57(1)×102, implies 157 ± 1. The
uncertainty was determined by training twenty autoencoders on the same testing and
training dataset discussed at the beginning of Section 3.

more restrictive, resulting in lower compression performance compared to the architecture
shown in Figure 8.

Figure 10 illustrates the relationship between MSE and compression rate in relation
to the size of the training dataset. Notably, the compression rates for training and testing
datasets align closely. A transition point is observed in the compression rate: once the
training dataset reaches a certain size, the compression significantly increases. This suggests
that the autoencoder requires sufficient information to effectively determine highly sparse
representations in the latent space.

The impact on MSE is also noteworthy. The MSE for the training and testing datasets
only converge when there is an adequate amount of training data. As expected, the testing
set’s MSE increases when insufficient data is used for training, indicating that a substantial
amount of data is necessary for the autoencoder to learn to compress all SAS-generated data
effectively. Interestingly, the MSE for the training set also rises with smaller training datasets,
which is surprising since one might expect memorization to occur with limited data.

4. Conclusion and Future Work

Our proposed sparse autoencoder methods present a novel approach to lossy compression
tailored to scientific data. By extending the principles of compressed sensing, we
introduce a framework that effectively captures and may preserve essential features of
scientific datasets. Incorporating sparsity-promoting regularizations within our autoencoder
architecture significantly enhances the encoding process, enabling more efficient representation

16

Figure 8. Top row displays the same SAS image with resolution of 32× 32, 16× 16, and
8× 8, from left to right. The second row shows the reconstruction of compression of this
image using a sparse autoencoder network of (1, 2, 1/2, z) for each resolution. We show the
MSE for each reconstruction of this SAS image in the corresponding title, and report that
the mean testing errors on the 150,000 independently random SAS images was 3.56× 10−3,
5.37× 10−3, and 5.84× 10−3, respectively. Correspondingly, the mean training compression
rates are 106×, 28×, and 12×. Here the third row shows the difference of the reconstructed
and original image and the last row shows the latent space with compression rate for this
SAS image.

17

Figure 9. Top row displays the same SAS image with resolution of 32× 32, 16× 16, and
8× 8, from left to right. The second row shows the reconstruction of compression of this
image using a sparse autoencoder network of (1, 2, 6,∇2z) for each resolution. We show the
MSE for each reconstruction of this SAS image in the corresponding title, and report that
the mean testing errors on the 150,000 independently random SAS images was 4.12× 10−3,
5.05× 10−3, and 3.83× 10−3, respectively. Correspondingly, the mean training compression
rates are 131×, 22×, and 3×. Here the third row shows the difference of the reconstructed
and original image and the last row shows the latent space with compression rate for this
SAS image.

18

Figure 10. Comparison of the MSE for training and testing set data as a function of the
training set size (left). Comparison of the compression rate for training and testing set data
as a function of the training set size (left).

of complex scientific data.
In our numerical experiments, we have demonstrated the superiority of our approach in

preserving critical signal features during compression. Our findings highlight the importance
of utilizing high-dimensional latent spaces, which provide ample capacity to capture features
and structures inherent in scientific data. By introducing a sparse feature selector of the
encoded latent variable, our methods offer a flexible and efficient means of obtaining sparse
representations in the latent space. Our proposed method introduces a robust learning
strategy that enables substantial compression ratios without compromising data quality.
Consequently, our novel approach paves the way for efficient storage, transmission, and
analysis of large-scale scientific datasets, addressing the growing challenges associated with
managing and processing scientific data.

Our future research efforts on sparse autoencoder methods for scientific data compression
will for instance explore network architectures, generative models, and attention mechanisms.
Data compression and related inverse problems–such as those arising in medical imaging
applications like MRI and CT–present compelling directions for future research We will
further explore hybrid compression techniques combining lossy and lossless approaches. We
will investigate domain-specific applications and scalability and efficiency are other important
areas for future research. By addressing these challenges and opportunities, we can further
advance the state-of-the-art in scientific data compression and meet the growing demands of
modern scientific research.

Acknowledgments

This work was partially supported by the National Science Foundation (NSF) under
grant DMS-2152661 (M. Chung) and grant DMS-2306101 (P. Atzberger). This work

19

was partially supported by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the US Department of Energy (DOE), Office of Advanced Scientific Computing Research
(R. Archibald). The US government retains and the publisher, by accepting the work
for publication, acknowledges that the US government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the submitted manuscript version of
this work, or allow others to do so, for US government purposes. DOE will provide public
access to these results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Bibliography

[1] B. M. Afkham, J. Chung, and M. Chung. “Goal-oriented Uncertainty Quantification
for Inverse Problems via Variational Encoder-Decoder Networks”. In: arXiv preprint
arXiv:2304.08324 (2023) (cited on page 2).

[2] P. Baldi and K. Hornik. “Neural networks and principal component analysis: Learning
from examples without local minima”. In: Neural networks 2.1 (1989), pages 53–58
(cited on page 2).

[3] C. Bonneville et al. “A Comprehensive Review of Latent Space Dynamics Identification
Algorithms for Intrusive and Non-Intrusive Reduced-Order-Modeling”. In: arXiv preprint
arXiv:2403.10748 (2024) (cited on page 2).

[4] H. Bourlard and Y. Kamp. “Auto-association by multilayer perceptrons and singular
value decomposition”. In: Biological cybernetics 59.4 (1988), pages 291–294 (cited on
page 1).

[5] T. Bricken et al. “Towards monosemanticity: Decomposing language models with
dictionary learning”. In: Transformer Circuits Thread (2023), page 2 (cited on page 3).

[6] V. Britanak, P. C. Yip, and K. R. Rao. Discrete cosine and sine transforms: general
properties, fast algorithms and integer approximations. Elsevier, 2010 (cited on page 12).

[7] E. J. Candes, J. K. Romberg, and T. Tao. “Stable signal recovery from incomplete
and inaccurate measurements”. In: Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences 59.8 (2006),
pages 1207–1223 (cited on page 4).

[8] E. J. Candes and T. Tao. “Decoding by linear programming”. In: IEEE transactions on
information theory 51.12 (2005), pages 4203–4215 (cited on page 4).

[9] E. J. Candès, J. Romberg, and T. Tao. “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information”. In: IEEE Transactions
on information theory 52.2 (2006), pages 489–509 (cited on page 8).

20

http://energy.gov/downloads/doe-public-access-plan

[10] X. Chen et al. “A sub-Nyquist rate sampling receiver exploiting compressive sensing”. In:
IEEE Transactions on Circuits and Systems I: Regular Papers 58.3 (2010), pages 507–
520 (cited on page 8).

[11] N. Cheng et al. “Bi-fidelity variational auto-encoder for uncertainty quantification”. In:
Computer Methods in Applied Mechanics and Engineering 421 (2024), page 116793
(cited on page 2).

[12] Z. Cheng et al. “Deep convolutional autoencoder-based lossy image compression”. In:
2018 Picture Coding Symposium (PCS). IEEE. 2018, pages 253–257 (cited on page 2).

[13] J. Chung and M. Chung. “Optimal regularized inverse matrices for inverse problems”.
In: SIAM Journal on Matrix Analysis and Applications 38.2 (2017), pages 458–477
(cited on page 6).

[14] M. Chung and R. A. Renaut. “A variable projection method for large-scale inverse
problems with ℓ1 regularization”. In: Applied Numerical Mathematics 192 (2023),
pages 297–318 (cited on page 4).

[15] M. Chung et al. “Paired Autoencoders for Inverse Problems”. In: arXiv preprint
arXiv:2405.13220 (2024) (cited on page 2).

[16] T. Compute and D. E. for Science (CADES). www.cades.ornl.gov. 2024 (cited on
page 12).

[17] T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). USA: Wiley-Interscience, 2006. isbn:
0471241954. url: http://dx.doi.org/10.1002/047174882X (cited on pages 4,
9, 10).

[18] R. P. documentation. pytorch.org/docs/stable/generated/torch.optim.RAdam.html. 2024
(cited on page 12).

[19] D. L. Donoho. “For most large underdetermined systems of linear equations the minimal
ℓ1-norm solution is also the sparsest solution”. In: Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 59.6
(2006), pages 797–829 (cited on page 4).

[20] B. Dumitrescu and P. Irofti. Dictionary learning algorithms and applications. Springer,
2018 (cited on page 8).

[21] M. Elad. Sparse and redundant representations: from theory to applications in signal
and image processing. Volume 2. Springer, 2010 (cited on page 4).

[22] S. Friedland and A. Torokhti. “Generalized rank-constrained matrix approximations”.
In: SIAM Journal on Matrix Analysis and Applications 29.2 (2007), pages 656–659
(cited on page 6).

[23] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016 (cited on
page 1).

21

https://www.cades.ornl.gov
http://dx.doi.org/10.1002/047174882X
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html

[24] R. M. Gray and D. L. Neuhoff. “Quantization”. In: IEEE transactions on information
theory 44.6 (1998), pages 2325–2383 (cited on pages 9, 10, 14).

[25] W. T. Heller, M. Doucet, and R. K. Archibald. “Sas-temper: Software for fitting small-
angle scattering data that provides automated reproducibility characterization”. In:
SoftwareX 16 (2021), page 100849. issn: 2352-7110. doi: https://doi.org/10.1016/
j.softx.2021.100849. url: https://www.sciencedirect.com/science/article/
pii/S235271102100128X (cited on page 12).

[26] X. Jiang et al. “A novel sparse auto-encoder for deep unsupervised learning”. In: 2013
Sixth international conference on advanced computational intelligence (ICACI). IEEE.
2013, pages 256–261 (cited on page 3).

[27] S. H. Kabil and H. Bourlard. “From Undercomplete to Sparse Overcomplete
Autoencoders to Improve LF-MMI Speech Recognition”. In: Interspeech 2022 (2022),
pages 1061–1065 (cited on pages 2, 3).

[28] D. P. Kingma and M. Welling. “Auto-encoding variational Bayes”. In: arXiv preprint
arXiv:1312.6114 (2013) (cited on page 2).

[29] M. A. Kramer. “Autoassociative neural networks”. In: Computers & chemical engineering
16.4 (1992), pages 313–328 (cited on page 1).

[30] K. Kreutz-Delgado et al. “Dictionary learning algorithms for sparse representation”. In:
Neural computation 15.2 (2003), pages 349–396 (cited on page 8).

[31] R. Kumar et al. “High-fidelity audio compression with improved RVQGAN”. In: Advances
in Neural Information Processing Systems 36 (2024) (cited on page 2).

[32] G. G. Langdon. “An introduction to arithmetic coding”. In: IBM Journal of Research
and Development 28.2 (1984), pages 135–149 (cited on pages 10, 14).

[33] D. Lappas, V. Argyriou, and D. Makris. “Fourier transformation autoencoders for
anomaly detection”. In: ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2021, pages 1475–1479 (cited on page 2).

[34] J. Lee, A. Rangarajan, and S. Ranka. “Nonlinear-by-Linear: Guaranteeing Error Bounds
in Compressive Autoencoders”. In: Proceedings of the 2023 Fifteenth International
Conference on Contemporary Computing. 2023, pages 552–561 (cited on page 2).

[35] Q. Li et al. “Deep sparse autoencoder and recursive neural network for EEG emotion
recognition”. In: Entropy 24.9 (2022), page 1187 (cited on page 3).

[36] J. Liu et al. “Exploring autoencoder-based error-bounded compression for scientific
data”. In: 2021 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE. 2021, pages 294–306 (cited on page 2).

[37] L. Liu et al. “On the variance of the adaptive learning rate and beyond. arXiv 2019”.
In: arXiv preprint arXiv:1908.03265 (2019) (cited on page 12).

22

https://doi.org/https://doi.org/10.1016/j.softx.2021.100849
https://doi.org/https://doi.org/10.1016/j.softx.2021.100849
https://www.sciencedirect.com/science/article/pii/S235271102100128X
https://www.sciencedirect.com/science/article/pii/S235271102100128X

[38] C. Louizos, M. Welling, and D. P. Kingma. “Learning sparse neural networks through
L0 regularization”. In: arXiv preprint arXiv:1712.01312 (2017) (cited on page 3).

[39] A. Majumdar. “An autoencoder based formulation for compressed sensing
reconstruction”. In: Magnetic resonance imaging 52 (2018), pages 62–68 (cited on
page 3).

[40] A. Makhzani and B. Frey. “K-sparse autoencoders”. In: arXiv preprint arXiv:1312.5663
(2013) (cited on page 3).

[41] G. Martino, D. Moroni, and M. Martinelli. “Are We Using Autoencoders in a Wrong
Way?” In: arXiv preprint arXiv:2309.01532 (2023) (cited on pages 3, 5).

[42] Q. Meng et al. “Relational autoencoder for feature extraction”. In: 2017 International
joint conference on neural networks (IJCNN). IEEE. 2017, pages 364–371 (cited on
page 2).

[43] J.-M. Muller et al. Handbook of floating-point arithmetic. Springer, 2018 (cited on
pages 10, 14).

[44] E. Newman, J. M. Solomon, and M. Chung. “Image reconstructions using sparse
dictionary representations and implicit, non-negative mappings”. In: arXiv preprint
arXiv:2312.03180 (2023) (cited on page 8).

[45] A. Ng et al. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011), pages 1–19
(cited on page 3).

[46] H.-A. T. Nguyen, T. H. Le, and T. D. Bui. “A deep wavelet sparse autoencoder method
for online and automatic electrooculographical artifact removal”. In: Neural Computing
and Applications 32.24 (2020), pages 18255–18270 (cited on page 3).

[47] E. Norlander and A. Sopasakis. “Latent space conditioning for improved classification
and anomaly detection”. In: arXiv preprint arXiv:1911.10599 (2019) (cited on page 5).

[48] E. Plaut. “From principal subspaces to principal components with linear autoencoders”.
In: arXiv preprint arXiv:1804.10253 (2018) (cited on page 2).

[49] A. Polino, R. Pascanu, and D. Alistarh. “Model compression via distillation and
quantization”. In: arXiv preprint arXiv:1802.05668 (2018) (cited on pages 10, 14).

[50] S. project. sasview.org. 2024 (cited on page 11).
[51] J. Rissanen and G. G. Langdon. “Arithmetic coding”. In: IBM Journal of research and

development 23.2 (1979), pages 149–162 (cited on pages 10, 14).
[52] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise removal

algorithms”. In: Physica D: nonlinear phenomena 60.1-4 (1992), pages 259–268 (cited
on page 5).

[53] M. Sakurada and T. Yairi. “Anomaly detection using autoencoders with nonlinear
dimensionality reduction”. In: Proceedings of the MLSDA 2014 2nd workshop on machine
learning for sensory data analysis. 2014, pages 4–11 (cited on page 2).

23

http://www.sasview.org/

[54] S. Scardapane et al. “Group sparse regularization for deep neural networks”. In:
Neurocomputing 241 (2017), pages 81–89 (cited on page 3).

[55] S. Tariyal et al. “Deep dictionary learning”. In: IEEE Access 4 (2016), pages 10096–10109
(cited on page 2).

[56] L. Theis et al. “Lossy image compression with compressive autoencoders”. In:
International conference on learning representations. 2022 (cited on page 2).

[57] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the
Royal Statistical Society Series B: Statistical Methodology 58.1 (1996), pages 267–288
(cited on page 4).

[58] I. Tošić and P. Frossard. “Dictionary learning”. In: IEEE Signal Processing Magazine
28.2 (2011), pages 27–38 (cited on page 8).

[59] P. Vincent et al. “Extracting and composing robust features with denoising autoencoders”.
In: Proceedings of the 25th international conference on Machine learning. 2008,
pages 1096–1103 (cited on page 2).

[60] Y. Wang, H. Yao, and S. Zhao. “Auto-encoder based dimensionality reduction”. In:
Neurocomputing 184 (2016), pages 232–242 (cited on page 2).

[61] I. H. Witten, R. M. Neal, and J. G. Cleary. “Arithmetic coding for data compression”.
In: Communications of the ACM 30.6 (1987), pages 520–540 (cited on pages 10, 14).

[62] P. Wu et al. “Reduced order model using convolutional auto-encoder with self-attention”.
In: Physics of Fluids 33.7 (2021) (cited on page 2).

[63] G. Zhang, Y. Liu, and X. Jin. “A survey of autoencoder-based recommender systems”.
In: Frontiers of Computer Science 14 (2020), pages 430–450 (cited on page 2).

[64] Y. Zhu et al. “Physics-constrained deep learning for high-dimensional surrogate modeling
and uncertainty quantification without labeled data”. In: Journal of Computational
Physics 394 (2019), pages 56–81 (cited on page 2).

24

	Introduction & Background
	Sparse Autoencoders for Scientific Data Compression
	Lossy Compression with L1-Regularizations and L2-Reconstructions
	Sparsity Promoting Linear Autoencoder
	Neural network Training
	Lossless Arithmetic Compression Methods

	Numerical Investigations
	Conclusion and Future Work

