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Introduction

When using the Black-Scholes-Merton model to price derivative contracts the volatility σ of the underlying
asset (stock) must be specified. Once this parameter is determined, the price of any contingent claim on
the asset can in principle then be determined by applying the Black-Scholes-Merton formula for the given
value of volatility σ. However, in practice, when considering the implied volatility σ in the Black-Scholes-
Model required to match contract prices realized in the marketplace, it is found that significantly different
volatilities are required even when the contracts depend on the same underlying asset. This suggests that the
lognormal asset price dynamics assumed in the Black-Scholes-Merton model is insufficient to fully capture
the asset price dynamics occurring in the marketplace. In particular, it is found that for call options that
the volatility changes for strike prices significantly larger or smaller than the current spot price of the asset,
these features are referred to as the volatility smile and volatility skew.

The Black-Scholes-Merton theory can be extended to capture many features of the volatility smile and
skew by introducing a more sophisticated dynamics for the underlying asset. One natural approach is to
allow for the volatility of the underlying asset to evolve according to its own stochastic dynamics. This
then presents a number of interesting issues, including how the model parameters should be calibrated to
the marketplace and how contracts valued under the model should be hedged in practice. In these notes
we discuss some basic stochastic models of the volatility. We then discuss the pricing of contingent claims
whose payoffs depend not only on the underlying asset price, but also possibly on the realized variance or
volatility of the asset. The material presented in these notes draws heavily on the lectures given in the Fall
2005 semester at the Courant Institute of Mathematical Sciences, New York University by Jim Gatheral of
Merrill Lynch.

Stochastic Volatility Models

In this section we present a general class of stochastic volatility models for which a valuation formula can
be derived. Let us consider as our asset price and stochastic volatility model the general class of stochastic
processes satisfying the SDE’s:

dSt = µtStdt+
√
vtStdB

(1)
t

dvt = α(St, vt)dt+ ηβ(St, vt)
√
vtB

(2)
t

where the Brownian motions have correlation
〈

dB(1)dB(2)
〉

= ρdt.
We can now proceed along lines similar to the hedging arguments used in deriving the Black-Scholes-

Merton formula in order to form a risk-free portfolio. Let V (S, v, t) denote the value of a contingent claim
depending on the current spot price S and spot variance v at time t. Now since there are two sources of
randomness in the model we must hedge with at least two financial assets not having completely correlated
sensitivities to S and v. The first natural choice is to use the underlying stock S, while the second which we
denote by V1 is much less obvious and an important issue in practice. Now let us form the hedging portfolio

Π = V − ∆ · S − ∆1 · V1.

An expression for the change in value of the portfolio Π over an interval in time dt can be obtain by using
Ito’s Lemma:

dΠ =

(

∂V

∂t
+

1

2
vS2 ∂

2V

∂S2
+ ρηvβS

∂2V

∂S∂v
+

1

2
η2vβ2 ∂

2V

∂v2

)

dt

− ∆1

(

∂V1

∂t
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vS2 ∂

2V1

∂S2
+ ρηvβS

∂2V1

∂S∂v
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η2vβ2 ∂

2V1

∂v2

)
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+

(

∂V

∂S
− ∆1

∂V1
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− ∆

)

dS

+

(

∂V

∂v
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)

dv.
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The risk can be hedged away to leading order by setting the coefficients of dS and dv to zero. This can be
obtained by setting ∆ and ∆1 to:

∆ =
∂V

∂S
− ∂V1

∂S
∆1

∆1 =
∂V
∂v
∂V1

∂v

.

Now with this choice of ∆ and ∆1 the change in value of the portfolio dΠ is deterministic to leading order.
Since investing in the portfolio gives a deterministic rate of return by the principles of no arbitrage it must
have as its return the risk-free interest rate r. Expressing this in terms of the change in value of the portfolio
gives:

dΠ = rΠdt

= r(V − ∆ · S − ∆1 · V1)dt.

We can now deduce a valuation formula for the contingent claim by equating this with the expression for
dΠ above. This gives the following differential equation for the option:

∂V
∂t + 1

2vS
2 ∂2V

∂S2 + ρηvβS ∂2V
∂S∂v + 1

2η
2vβ2 ∂2V

∂v2 + rS ∂V
∂S − rV

∂V
∂v

=
∂V1

∂t + 1
2vS

2 ∂2V1

∂S2 + ρηvβS ∂2V1

∂S∂v + 1
2η

2vβ2 ∂2V1

∂v2 + rS ∂V1

∂S − rV1

∂V1

∂v

Since V and V1 are distinct functions this requires that the left and right hand sides must be equal to a
function of only the underlying parameters S, v, t. This gives the valuation formula for V :

∂V

∂t
+

1

2
vS2 ∂

2V

∂S2
+ ρηvβS

∂2V

∂S∂v
+

1

2
η2vβ2 ∂

2V

∂v2
+ rS

∂V

∂S
− rV = g(s, v, t)

∂V

∂v
.

Conventionally the function on the RHS is expressed as g(s, v, t) = α − ψβ, where ψ is interpreted as the
market price of volatility risk.

A particular model for which much analysis has been done is the Heston Stochastic Volatility Model:

dSt

St
= rdt+

√
vtdB

(1)
t

dvt = −λ (vt − v̄) dt+ η
√
vtdB

(2)
t .

In this model the variance vt (volatility
√
vt) is modeled by a mean-reverting process. The parameter λ

then gives the time scale 1
λ for the reversion of vt to the asymptotic variance v̄. The parameter η is then

the ”volatility of volatility” and the Black-Scholes-Merton model is recovered with volatility
√
v̄ in the limit

η → 0 or λ→ ∞. For this model economic arguments can be made which indicate that the market price of
volatility risk is proportional to the variance ψ = θv. The valuation equation is then:

∂V

∂t
+

1

2
vS2 ∂

2V

∂S2
+ ρηvS

∂2V

∂S∂v
+

1

2
η2v

∂2V

∂v2
+ rS

∂V

∂S
− rV = λ′(v − v̄′)

∂V

∂v

where λ′ = λ− θ and λ′v̄′ = λv̄.
Now in principle options depending on the underlying asset ST and possibly even the variance vT can

be priced by developing a numerical scheme for the PDE and working backward in time from the payoff
at maturity f(ST , vT , T ). However, in practice this price is not as readily justified as in the Black-Scholes-
Merton case since the variance vt is not a tradable asset in the marketplace and must somehow be dynamically
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hedged. The model also has many parameters, which include ρ, η, λ, v̄, θ, that must be calibrated so as to
model the marketplace. The choice of these parameters may significantly influence the prices obtained for
the options, especially those depending directly on vt. The issue of how to determine appropriate parameters
which capture features of the marketplace, in particular the observed Black-Scholes-Merton implied volatility
surface, is an active area of research. We shall leave as a discussion of the important issue of how to
calibrate the model to another time. In these notes we shall discuss primarily how the model can be used
mathematically to price options. In some special cases we shall discuss how these prices can be justified
(hedged) by using assets available in the marketplace.

Pricing Options in the Heston Model

Let x = log
(

Ft

K

)

, where the forward price is Ft = Ste
r(T−t), and let τ = T − t. Then the valuation equation

becomes:

−∂V
∂τ

+
1

2
vVxx − 1

2
vVx +

1

2
η2vVvv + ρηvVxv − λ′(v − v̄′)Vv = 0

where Vx = ∂V
∂x and Vv = ∂V

∂v . An important consequence of this change of variable is that the PDE now has
coefficients which are constant with respect to x, that is they only depend on v. This allows for the Fourier
Transform to be applied which converts derivatives in x to multiplication, leaving only derivatives in τ and
v. The Fourier Transform is defined by:

V̂ (k, v, τ) =

∫ ∞

−∞
e−ikxV (x, v, τ)dx

with inverse:

V (x, v, τ) =
1

2π

∫ ∞

−∞
eikxV̂ (k, v, τ)dk.

Applying the Fourier Transform to the valuation PDE gives:

−∂V̂
∂τ

+
1

2
k2vV̂ − 1

2
ikvV̂ +

1

2
η2vV̂vv + ρηikvVv − λ′(v − v̄′)Vv = 0.

By grouping common terms in v this becomes:

v
(

αV̂ − βV̂v + γV̂vv

)

+ λ′v̄′V̂v − ∂V

∂τ
= 0

where α = −k2

2 − ik
2 , β = λ′ − ρηik, γ = η2

2 .
To find a solution to this equation consider let us consider the following form for the solution:

Ṽ (k, v, τ) = 2π exp (C(k, τ)v̄′ +D(k, τ)v) V̂ (k, v, 0).

and make this substitution for V̂ above. This gives that

∂Ṽ

∂τ
=

(

v̄′
∂C

∂τ
+ v

∂D

∂τ

)

Ṽ

Ṽv = DṼ

Ṽvv = D2Ṽ .

This substitution in effect converts differentiation in v to multiplication and reduces the entire system to a
system of ODE’s:

∂C

∂τ
= λ′D

∂D

∂τ
= α− βD + γD2 = γ(D − r+)(D − r−)
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where

r± =
β ±

√

β2 − 4αγ

2γ
=
β ± δ

η2
.

The equations can be integrated with (C(k,0) = 0, D(k,0) = 0) to obtain:

D(k, τ) = r−
1 − e−δτ

1 − ge−δτ

C(k, τ) = λ′
(

r−r+ − 2

η2
log

(

1 − ge−δτ

1 − g

))

where g = r−

r+
.

From equation 1 and using the determined C and D from above we obtain using the Inverse Fourier
Transform the ”risk-neutral” valuation formula for V (x, v, τ):

V (x, v, τ) =

∫ ∞

−∞
φT (k, v, τ)V̂ (k, v, 0)eikxdk

where

φT (k, v, τ) = exp (C(k, τ)v̄′ +D(k, τ)v) .

From this expression a numerical approach for estimating the option value can be obtained by approximating
the payoff function by evaluation at a finite number of lattice sites and using the Fast Discrete Fourier
Transform, see (1).

Furthermore, since this holds for any payoff function V (x, v, 0) we have that the characteristic function
of the ”risk-neutral” probability in x is φT (k, v, τ) (for a fixed v and τ). To see this let V (x, v, 0) = θ(x−x0)
where θ is the Heaviside function defined by θ(y) = 0 for y ≤ 0 and θ(y) = 1 for y > 0. The Fourier

Transform is V̂ (k, v, 0) = θ̂(k) = ” − 1
ik”. This formally gives:

Pr{xT > x0} = V (x, v, τ) =

∫ ∞

−∞
exp (C(k, τ)v̄′ +D(k, τ)v + ikx0)

1

−ik dk.

The ”risk-neutral” probability density is ρ(x0, v, τ) = −∂ Pr{xT >x0}
∂x0

. Differentiating the expression above
gives:

ρ(x, v, τ) =

∫ ∞

−∞
exp (C(k, τ)v̄′ +D(k, τ)v) eikxdk

showing formally that ρ̂(k, v, τ) = φT (k, v, τ) by the invertibility of the Fourier Transform.

Realized Variance and Realized Volatility

In the stochastic volatility model the variance processes is designed to capture features of the fluctuations
of observed asset prices in the marketplace, but is not strictly speaking directly observable. One approach
is to make the definition that the ”realized variance” in the marketplace is:

σ2
R(T ) =

1

N

N
∑

j=1

[

log

(

Stj+∆t

Stj

)]2

with the corresponding ”realized volatility”:

σR(T ) =





1

N

N
∑

j=1

[

log

(

Stj+∆t

Stj

)]2




1/2
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where time is discretized with tj = j∆t.
If the assets are assumed to undergo lognormal stochastic dynamics (with a piecewise continuous sto-

chastic volatility) then it can be shown that in the limit ∆t→ 0:

σ2
R(T ) =

1

T

∫ T

0

σ2
t dt

and

σR(T ) =

(

1

T

∫ T

0

σ2
t dt

)1/2

.

where σt is the continuous time limit of the volatility. For example, if the dynamics are assumed to be those
of the Heston model then σ2

t = vt.

Pricing a Variance Swap

A variance swap is a contingent claim which pays the owner the difference between the realized variance and
some strike variance level:

Payoff = N ·
(

σ2
R(T ) −Kv

)

where N is the numeraire (for example converting variance units to dollars). For simplicity, we shall always
take N = $1 per unit variance. We now discuss one approach to determining the ”fair price” of variance
Kv, which makes the contract have zero value to each party participating in the swap.

In the case of a forward contract we found that the ”fair price” could be determined by an arbitrage
argument which gave a static position in the underlying asset and a bond. Replicating the payoff with a
static position was made possible by the linearity of the payoff function. In principle we can try to proceed
along similar lines for the variance swap, but, we can not buy as readily the realized variance σ2

R(T ) since it
is not a trading asset in the marketplace. However, while the variance is not directly traded one approach
is to attempt to construct a portfolio of traded assets which closely tracks σ2

R(T ). This requires that the
portfolio have the feature that it is sensitive to fluctuations of the assets’ values but does not give exposure
to any particular value of the assets (∆ = 0,Γ 6= 0). We shall now make this more clear.

Let us suppose that the asset prices undergo lognormal dynamics, with stochastic volatility σt:

dSt

St
= µtdt+ σtdBt.

Then making the change of variable Xt = log(St/S0) and applying Ito’s Lemma we have:

d log(St/S0) =

(

µt −
1

2
σ2

t

)

dt+ σtdBt.

Now subtracting we have:

dSt

St
− d log(St/S0) =

1

2
σ2

t dt.

This gives an expression for the realized variance:

σ2
R(T ) =

2

T

(

∫ T

0

dSt

St
− log(ST /S0)

)

.

The first term can be interpreted financially as a dynamic position in which at each instant in time $1 is
invested in the underlying asset. The second term can be interpreted financially as selling short a contingent
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claim with maturity T which has a logarithm payoff of the underlying asset. Since contracts paying the
logarithm of an asset may not be readily available in the marketplace we seek a portfolio in terms of the
more standard call and put options. Any piecewise linear payoff function can be realized exactly by a finite
number of call and put options by an appropriate choice of strikes K and by making investments with
the appropriate weights in each contract. Therefore, any continuous payoff function can be approximated
arbitrarily well by a finite (possibly large) number of call and put options. In the limit of using an infinite
number of options the payoff can be replicated exactly. For any twice continuously differentiable payoff
function we have the following representation formula:

f(S) = f(S∗) + f ′(S∗)(S − S∗) +

∫ S∗

0

f ′′(K)(K − S)+dK +

∫ ∞

S∗

f ′′(K)(S −K)+dK

where S∗ ∈ [0,∞) is an arbitrary value. This gives for the logarithm contingent claim at maturity:

− log(ST /S0) = − log(S∗/S0) −
ST − S∗

S∗ +

∫ S∗

0

1

K2
(K − ST )+dK +

∫ ∞

S∗

1

K2
(ST −K)+dK.

The realized variance can then be replicated by the portfolio having value at maturity T :

σ2
R(T ) =

2

T

(

∫ T

0

dSt

St
− log

(

S∗

S0

)

−
(

ST

S∗ − 1

)

+

∫ S∗

0

1

K2
(K − ST )+dK +

∫ ∞

S∗

1

K2
(ST −K)+dK

)

.

We remark that each term now corresponds either to a position in a bond, forward contract, or call or put
option. The fair value of the variance swap Kv at time 0 is then given by the foward value of the portfolio
above at time 0 with maturity at time T :

Kv =
2

T

(

rT − log

(

S∗

S0

)

−
(

S0

S∗ e
rT − 1

)

+ erT

∫ S∗

0

1

K2
P (K,T )dK + erT

∫ ∞

S∗

1

K2
C(K,T )dK

)

where P (K,T ), C(K,T ) are short-hand for put and call options at time 0 with strike K having maturity T .
In practice an important issue is that in the marketplace call and put options will only be available for a

finite number of strike prices K and maturities T . This means that prices (implied volatilities) for the calls
and puts not directly available in the marketplace must somehow be estimated to obtain Kv. One approach is
to calibrate the Heston model to the market for the available call and put options and to use the call and put
prices (implied volatilities) under the model to ”interpolate” the known values. These ”interpolated” values
under the model could then in principle be used to form positions which replicate the options for the strikes
needed in the representation formula above. However, in practice this must be carefully checked to make
sure sensible prices (implied volatilities) are obtained, especially for strikes that give options significantly
out-of-the-money. For a further discussion of these issues and the hedging of variance swaps, see (2; 3; 6).

Pricing Volatility Swaps

A volatility swap is a contract which has a payoff based on the difference between the realized volatility and
some strike volatility level:

Payoff = N ·
(

σR(T ) −K√
v

)

where K√
v is the strike volatility and N is the numeraire (for example converting volatility units to dollars

such as N = $1 per unit volatility).
Pricing of a volatility swap presents significantly more difficulty than the variance swap. The ”realized

volatility” is the square root (a non-linear function) of the ”realized variance”. So even though the ”realized
variance” can be replicated in principle by a portfolio of the underlying asset, bond, and options to make use
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of this portfolio for the ”realized volatility” would require a dynamically adjusted position in the portfolio of
the ”realized variance” which would be difficult to carry out in practice. A price can be obtained in principle
from a stochastic volatility model, such as the Heston model calibrated to the marketplace, but such models
make pretty strict assumptions about how the volatility will evolve in time. In order to trade such options,
practioners would ideally like to have a robust hedging strategy to replicate the payoff of the contracts. How
to perform such hedging of volatility options is at present an active area of research, see (3; 5–12).
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